メインコンテンツに移動します。
計算
Tick mark Image
x で微分する
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

36^{-\frac{1}{2}}\left(x^{-4}\right)^{-\frac{1}{2}}
\left(36x^{-4}\right)^{-\frac{1}{2}} を展開します。
36^{-\frac{1}{2}}x^{2}
数値を累乗するには、指数を乗算します。-4 と -\frac{1}{2} を乗算して 2 を取得します。
\frac{1}{6}x^{2}
36 の -\frac{1}{2} 乗を計算して \frac{1}{6} を求めます。
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{1}{2}-1}\frac{\mathrm{d}}{\mathrm{d}x}(36x^{-4})
F が 2 つの微分可能な関数 f\left(u\right) と u=g\left(x\right) の合成関数である場合、つまり F\left(x\right)=f\left(g\left(x\right)\right) である場合、F の微分係数は u に関する f の微分係数と x に関する g の微分係数を掛けたもの、つまり \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) となります。
-\frac{1}{2}\times \left(36x^{-4}\right)^{-\frac{3}{2}}\left(-4\right)\times 36x^{-4-1}
多項式の微分係数は、その項の微分係数の和です。定数項の微分係数は 0 です。ax^{n} の微分係数は nax^{n-1} です。
72x^{-5}\times \left(36x^{-4}\right)^{-\frac{3}{2}}
簡約化します。