計算 (複素数の解)
\frac{21\sqrt{42}i}{4}\approx 34.023888667i
実数部 (複素数の解)
0
計算
\text{Indeterminate}
共有
クリップボードにコピー済み
\frac{-7}{2}\sqrt{-21}\left(-\frac{3}{2}\right)\sqrt{2}
-7 と \frac{1}{2} を乗算して \frac{-7}{2} を求めます。
-\frac{7}{2}\sqrt{-21}\left(-\frac{3}{2}\right)\sqrt{2}
分数 \frac{-7}{2} は負の符号を削除することで -\frac{7}{2} と書き換えることができます。
-\frac{7}{2}\sqrt{21}i\left(-\frac{3}{2}\right)\sqrt{2}
-21=21\left(-1\right) を因数分解します。 積の平方根を \sqrt{21}\sqrt{-1} 平方根の積として書き直します。 \sqrt{21\left(-1\right)} 定義では、-1 の平方根は i です。
\frac{21}{4}i\sqrt{21}\sqrt{2}
-\frac{7}{2} と -\frac{3}{2}i を乗算して \frac{21}{4}i を求めます。
\frac{21}{4}i\sqrt{42}
\sqrt{21} と \sqrt{2} を乗算するには、平方根の中の数値を乗算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}