計算
2ab^{2}
a で微分する
2b^{2}
クイズ
Algebra
( - \frac { 12 } { 7 } a ^ { 4 } b ^ { 4 } ) : ( - \frac { 6 } { 7 } a ^ { 3 } b ^ { 2 } )
共有
クリップボードにコピー済み
\frac{\left(-\frac{12}{7}\right)^{1}a^{4}b^{4}}{\left(-\frac{6}{7}\right)^{1}a^{3}b^{2}}
指数の法則を使用して、式を簡単にします。
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{4-3}b^{4-2}
同じ底の累乗を除算するには、分子の指数から分母の指数を減算します。
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{1}b^{4-2}
4 から 3 を減算します。
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}ab^{2}
4 から 2 を減算します。
2ab^{2}
-\frac{12}{7} を -\frac{6}{7} で除算するには、-\frac{12}{7} に -\frac{6}{7} の逆数を乗算します。
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{\frac{12b^{4}}{7}}{-\frac{6b^{2}}{7}}\right)a^{4-3})
同じ底の累乗を除算するには、分子の指数から分母の指数を減算します。
\frac{\mathrm{d}}{\mathrm{d}a}(2b^{2}a^{1})
算術演算を実行します。
2b^{2}a^{1-1}
多項式の微分係数は、その項の微分係数の和です。定数項の微分係数は 0 です。ax^{n} の微分係数は nax^{n-1} です。
2b^{2}a^{0}
算術演算を実行します。
2b^{2}\times 1
0 を除く任意の項 t の場合は、t^{0}=1 です。
2b^{2}
任意の項 t の場合は、t\times 1=t と 1t=t です。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}