メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-6 ab=1\left(-27\right)=-27
グループ化によって式を因数分解します。まず、式を x^{2}+ax+bx-27 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-27 3,-9
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -27 になる整数の組み合わせをすべて一覧表示します。
1-27=-26 3-9=-6
各組み合わせの和を計算します。
a=-9 b=3
解は和が -6 になる組み合わせです。
\left(x^{2}-9x\right)+\left(3x-27\right)
x^{2}-6x-27 を \left(x^{2}-9x\right)+\left(3x-27\right) に書き換えます。
x\left(x-9\right)+3\left(x-9\right)
1 番目のグループの x と 2 番目のグループの 3 をくくり出します。
\left(x-9\right)\left(x+3\right)
分配特性を使用して一般項 x-9 を除外します。
x^{2}-6x-27=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
-6 を 2 乗します。
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
-4 と -27 を乗算します。
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
36 を 108 に加算します。
x=\frac{-\left(-6\right)±12}{2}
144 の平方根をとります。
x=\frac{6±12}{2}
-6 の反数は 6 です。
x=\frac{18}{2}
± が正の時の方程式 x=\frac{6±12}{2} の解を求めます。 6 を 12 に加算します。
x=9
18 を 2 で除算します。
x=-\frac{6}{2}
± が負の時の方程式 x=\frac{6±12}{2} の解を求めます。 6 から 12 を減算します。
x=-3
-6 を 2 で除算します。
x^{2}-6x-27=\left(x-9\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に 9 を x_{2} に -3 を代入します。
x^{2}-6x-27=\left(x-9\right)\left(x+3\right)
すべての p-\left(-q\right) の形式の式を p+q の形式に簡単にします。