メインコンテンツに移動します。
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-5 ab=-2250
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-5x-2250 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
1,-2250 2,-1125 3,-750 5,-450 6,-375 9,-250 10,-225 15,-150 18,-125 25,-90 30,-75 45,-50
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -2250 になる整数の組み合わせをすべて一覧表示します。
1-2250=-2249 2-1125=-1123 3-750=-747 5-450=-445 6-375=-369 9-250=-241 10-225=-215 15-150=-135 18-125=-107 25-90=-65 30-75=-45 45-50=-5
各組み合わせの和を計算します。
a=-50 b=45
解は和が -5 になる組み合わせです。
\left(x-50\right)\left(x+45\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=50 x=-45
方程式の解を求めるには、x-50=0 と x+45=0 を解きます。
a+b=-5 ab=1\left(-2250\right)=-2250
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx-2250 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-2250 2,-1125 3,-750 5,-450 6,-375 9,-250 10,-225 15,-150 18,-125 25,-90 30,-75 45,-50
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -2250 になる整数の組み合わせをすべて一覧表示します。
1-2250=-2249 2-1125=-1123 3-750=-747 5-450=-445 6-375=-369 9-250=-241 10-225=-215 15-150=-135 18-125=-107 25-90=-65 30-75=-45 45-50=-5
各組み合わせの和を計算します。
a=-50 b=45
解は和が -5 になる組み合わせです。
\left(x^{2}-50x\right)+\left(45x-2250\right)
x^{2}-5x-2250 を \left(x^{2}-50x\right)+\left(45x-2250\right) に書き換えます。
x\left(x-50\right)+45\left(x-50\right)
1 番目のグループの x と 2 番目のグループの 45 をくくり出します。
\left(x-50\right)\left(x+45\right)
分配特性を使用して一般項 x-50 を除外します。
x=50 x=-45
方程式の解を求めるには、x-50=0 と x+45=0 を解きます。
x^{2}-5x-2250=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-2250\right)}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -5 を代入し、c に -2250 を代入します。
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-2250\right)}}{2}
-5 を 2 乗します。
x=\frac{-\left(-5\right)±\sqrt{25+9000}}{2}
-4 と -2250 を乗算します。
x=\frac{-\left(-5\right)±\sqrt{9025}}{2}
25 を 9000 に加算します。
x=\frac{-\left(-5\right)±95}{2}
9025 の平方根をとります。
x=\frac{5±95}{2}
-5 の反数は 5 です。
x=\frac{100}{2}
± が正の時の方程式 x=\frac{5±95}{2} の解を求めます。 5 を 95 に加算します。
x=50
100 を 2 で除算します。
x=-\frac{90}{2}
± が負の時の方程式 x=\frac{5±95}{2} の解を求めます。 5 から 95 を減算します。
x=-45
-90 を 2 で除算します。
x=50 x=-45
方程式が解けました。
x^{2}-5x-2250=0
このような二次方程式は、平方完成により解くことができます。平方完成するには、方程式は最初に x^{2}+bx=c の形式になっている必要があります。
x^{2}-5x-2250-\left(-2250\right)=-\left(-2250\right)
方程式の両辺に 2250 を加算します。
x^{2}-5x=-\left(-2250\right)
それ自体から -2250 を減算すると 0 のままです。
x^{2}-5x=2250
0 から -2250 を減算します。
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=2250+\left(-\frac{5}{2}\right)^{2}
-5 (x 項の係数) を 2 で除算して -\frac{5}{2} を求めます。次に、方程式の両辺に -\frac{5}{2} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-5x+\frac{25}{4}=2250+\frac{25}{4}
-\frac{5}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}-5x+\frac{25}{4}=\frac{9025}{4}
2250 を \frac{25}{4} に加算します。
\left(x-\frac{5}{2}\right)^{2}=\frac{9025}{4}
因数x^{2}-5x+\frac{25}{4}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9025}{4}}
方程式の両辺の平方根をとります。
x-\frac{5}{2}=\frac{95}{2} x-\frac{5}{2}=-\frac{95}{2}
簡約化します。
x=50 x=-45
方程式の両辺に \frac{5}{2} を加算します。