x を解く
x=3
グラフ
共有
クリップボードにコピー済み
\left(\sqrt{4+2x-x^{2}}\right)^{2}=\left(x-2\right)^{2}
方程式の両辺を 2 乗します。
4+2x-x^{2}=\left(x-2\right)^{2}
\sqrt{4+2x-x^{2}} の 2 乗を計算して 4+2x-x^{2} を求めます。
4+2x-x^{2}=x^{2}-4x+4
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-2\right)^{2} を展開します。
4+2x-x^{2}-x^{2}=-4x+4
両辺から x^{2} を減算します。
4+2x-2x^{2}=-4x+4
-x^{2} と -x^{2} をまとめて -2x^{2} を求めます。
4+2x-2x^{2}+4x=4
4x を両辺に追加します。
4+6x-2x^{2}=4
2x と 4x をまとめて 6x を求めます。
4+6x-2x^{2}-4=0
両辺から 4 を減算します。
6x-2x^{2}=0
4 から 4 を減算して 0 を求めます。
x\left(6-2x\right)=0
x をくくり出します。
x=0 x=3
方程式の解を求めるには、x=0 と 6-2x=0 を解きます。
\sqrt{4+2\times 0-0^{2}}=0-2
方程式 \sqrt{4+2x-x^{2}}=x-2 の x に 0 を代入します。
2=-2
簡約化します。 左側と右側の符号が反対であるため、値 x=0 は方程式を満たしていません。
\sqrt{4+2\times 3-3^{2}}=3-2
方程式 \sqrt{4+2x-x^{2}}=x-2 の x に 3 を代入します。
1=1
簡約化します。 値 x=3 は数式を満たしています。
x=3
方程式 \sqrt{4+2x-x^{2}}=x-2 には独自の解があります。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}