X で微分する
\cos(X)
計算
\sin(X)
共有
クリップボードにコピー済み
\frac{\mathrm{d}}{\mathrm{d}X}(\sin(X))=\left(\lim_{h\to 0}\frac{\sin(X+h)-\sin(X)}{h}\right)
関数 f\left(x\right) では、その極限が存在する場合、微分係数は h が 0 に近づくときの \frac{f\left(x+h\right)-f\left(x\right)}{h} の極限です。
\lim_{h\to 0}\frac{\sin(X+h)-\sin(X)}{h}
正弦の加法定理を使用します。
\lim_{h\to 0}\frac{\sin(X)\left(\cos(h)-1\right)+\cos(X)\sin(h)}{h}
\sin(X) をくくり出します。
\left(\lim_{h\to 0}\sin(X)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(X)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
極限を書き換えます。
\sin(X)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(X)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
h が 0 に限定されるように計算するときに、X は定数となることを使用します。
\sin(X)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(X)
極限 \lim_{X\to 0}\frac{\sin(X)}{X} は 1 です。
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
極限 \lim_{h\to 0}\frac{\cos(h)-1}{h} の値を求めるには、まず分子と分母を \cos(h)+1 で乗算します。
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 と \cos(h)-1 を乗算します。
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ピタゴラスの公式を使用します。
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
極限を書き換えます。
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
極限 \lim_{X\to 0}\frac{\sin(X)}{X} は 1 です。
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
\frac{\sin(h)}{\cos(h)+1} が 0 で連続であるという事実を使用します。
\cos(X)
値 0 を式 \sin(X)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(X) に代入します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}