x を解く
x=\frac{3+\sqrt{7}i}{4}\approx 0.75+0.661437828i
x=\frac{-\sqrt{7}i+3}{4}\approx 0.75-0.661437828i
共有
クリップボードにコピー済み
x^{2}-\frac{3}{2}x=-1
両辺から \frac{3}{2}x を減算します。
x^{2}-\frac{3}{2}x+1=0
1 を両辺に追加します。
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -\frac{3}{2} を代入し、c に 1 を代入します。
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4}}{2}
-\frac{3}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{7}{4}}}{2}
\frac{9}{4} を -4 に加算します。
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{7}i}{2}}{2}
-\frac{7}{4} の平方根をとります。
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2}
-\frac{3}{2} の反数は \frac{3}{2} です。
x=\frac{3+\sqrt{7}i}{2\times 2}
± が正の時の方程式 x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} の解を求めます。 \frac{3}{2} を \frac{i\sqrt{7}}{2} に加算します。
x=\frac{3+\sqrt{7}i}{4}
\frac{3+i\sqrt{7}}{2} を 2 で除算します。
x=\frac{-\sqrt{7}i+3}{2\times 2}
± が負の時の方程式 x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2} の解を求めます。 \frac{3}{2} から \frac{i\sqrt{7}}{2} を減算します。
x=\frac{-\sqrt{7}i+3}{4}
\frac{3-i\sqrt{7}}{2} を 2 で除算します。
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
方程式が解けました。
x^{2}-\frac{3}{2}x=-1
両辺から \frac{3}{2}x を減算します。
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=-1+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} (x 項の係数) を 2 で除算して -\frac{3}{4} を求めます。次に、方程式の両辺に -\frac{3}{4} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-\frac{3}{2}x+\frac{9}{16}=-1+\frac{9}{16}
-\frac{3}{4} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}-\frac{3}{2}x+\frac{9}{16}=-\frac{7}{16}
-1 を \frac{9}{16} に加算します。
\left(x-\frac{3}{4}\right)^{2}=-\frac{7}{16}
因数x^{2}-\frac{3}{2}x+\frac{9}{16}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{-\frac{7}{16}}
方程式の両辺の平方根をとります。
x-\frac{3}{4}=\frac{\sqrt{7}i}{4} x-\frac{3}{4}=-\frac{\sqrt{7}i}{4}
簡約化します。
x=\frac{3+\sqrt{7}i}{4} x=\frac{-\sqrt{7}i+3}{4}
方程式の両辺に \frac{3}{4} を加算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}