c,b,X,a,y を解く (複素数の解)
y=-\sqrt{c}\text{, }c\in \mathrm{C}\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=-\sqrt{y^{2}-c}
y=\sqrt{c}\text{, }c\in \mathrm{C}\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=-\sqrt{y^{2}-c}
y=-\sqrt{X^{4}+c}\text{, }c\in \mathrm{C}\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{C}\text{, }a=\sqrt{y^{2}-c}
y=\sqrt{X^{4}+c}\text{, }c\in \mathrm{C}\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{C}\text{, }a=\sqrt{y^{2}-c}
c,b,X,a,y を解く
\left\{\begin{matrix}\\y=-X^{2}\text{, }c=0\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{R}\text{, }a=|y|\text{; }y=-\sqrt{X^{4}+c}\text{, }c>0\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{R}\text{, }a=\sqrt{y^{2}-c}\text{; }y=0\text{, }c=0\text{, }b=0\text{, }X=0\text{, }a=0\text{; }y=-\sqrt{c}\text{, }c\geq 0\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=\sqrt{y^{2}-c}\text{; }y=0\text{, }c=0\text{, }b=-a^{2}\text{, }X=0\text{, }a=0\text{; }y=X^{2}\text{, }c=0\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{R}\text{, }a=|y|\text{; }y=\sqrt{X^{4}+c}\text{, }c>0\text{, }b=y^{2}-a^{2}\text{, }X\in \mathrm{R}\text{, }a=\sqrt{y^{2}-c}\text{; }y=\sqrt{c}\text{, }c\geq 0\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=\sqrt{y^{2}-c}\text{; }y=\sqrt{c}\text{, }c\geq 0\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=-\sqrt{y^{2}-c}\text{; }y=-\sqrt{c}\text{, }c\geq 0\text{, }b=y^{2}-a^{2}\text{, }X=0\text{, }a=-\sqrt{y^{2}-c}\text{, }&\text{unconditionally}\\y=-\sqrt{X^{4}+c}\text{, }c\in [-X^{4},0)\text{, }b=y^{2}-a^{2}\text{, }X\neq 0\text{, }a=\sqrt{y^{2}-c}\text{; }y=\sqrt{X^{4}+c}\text{, }c\in [-X^{4},0)\text{, }b=y^{2}-a^{2}\text{, }X\neq 0\text{, }a=\sqrt{y^{2}-c}\text{, }&c\leq 0\end{matrix}\right.
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}