メインコンテンツに移動します。
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

3x^{2}-13x+12=\left(x-3\right)\times 2x
分配則を使用して x-3 と 3x-4 を乗算して同類項をまとめます。
3x^{2}-13x+12=\left(2x-6\right)x
分配則を使用して x-3 と 2 を乗算します。
3x^{2}-13x+12=2x^{2}-6x
分配則を使用して 2x-6 と x を乗算します。
3x^{2}-13x+12-2x^{2}=-6x
両辺から 2x^{2} を減算します。
x^{2}-13x+12=-6x
3x^{2} と -2x^{2} をまとめて x^{2} を求めます。
x^{2}-13x+12+6x=0
6x を両辺に追加します。
x^{2}-7x+12=0
-13x と 6x をまとめて -7x を求めます。
a+b=-7 ab=12
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-7x+12 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
-1,-12 -2,-6 -3,-4
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 12 になる整数の組み合わせをすべて一覧表示します。
-1-12=-13 -2-6=-8 -3-4=-7
各組み合わせの和を計算します。
a=-4 b=-3
解は和が -7 になる組み合わせです。
\left(x-4\right)\left(x-3\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=4 x=3
方程式の解を求めるには、x-4=0 と x-3=0 を解きます。
3x^{2}-13x+12=\left(x-3\right)\times 2x
分配則を使用して x-3 と 3x-4 を乗算して同類項をまとめます。
3x^{2}-13x+12=\left(2x-6\right)x
分配則を使用して x-3 と 2 を乗算します。
3x^{2}-13x+12=2x^{2}-6x
分配則を使用して 2x-6 と x を乗算します。
3x^{2}-13x+12-2x^{2}=-6x
両辺から 2x^{2} を減算します。
x^{2}-13x+12=-6x
3x^{2} と -2x^{2} をまとめて x^{2} を求めます。
x^{2}-13x+12+6x=0
6x を両辺に追加します。
x^{2}-7x+12=0
-13x と 6x をまとめて -7x を求めます。
a+b=-7 ab=1\times 12=12
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx+12 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
-1,-12 -2,-6 -3,-4
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 12 になる整数の組み合わせをすべて一覧表示します。
-1-12=-13 -2-6=-8 -3-4=-7
各組み合わせの和を計算します。
a=-4 b=-3
解は和が -7 になる組み合わせです。
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12 を \left(x^{2}-4x\right)+\left(-3x+12\right) に書き換えます。
x\left(x-4\right)-3\left(x-4\right)
1 番目のグループの x と 2 番目のグループの -3 をくくり出します。
\left(x-4\right)\left(x-3\right)
分配特性を使用して一般項 x-4 を除外します。
x=4 x=3
方程式の解を求めるには、x-4=0 と x-3=0 を解きます。
3x^{2}-13x+12=\left(x-3\right)\times 2x
分配則を使用して x-3 と 3x-4 を乗算して同類項をまとめます。
3x^{2}-13x+12=\left(2x-6\right)x
分配則を使用して x-3 と 2 を乗算します。
3x^{2}-13x+12=2x^{2}-6x
分配則を使用して 2x-6 と x を乗算します。
3x^{2}-13x+12-2x^{2}=-6x
両辺から 2x^{2} を減算します。
x^{2}-13x+12=-6x
3x^{2} と -2x^{2} をまとめて x^{2} を求めます。
x^{2}-13x+12+6x=0
6x を両辺に追加します。
x^{2}-7x+12=0
-13x と 6x をまとめて -7x を求めます。
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -7 を代入し、c に 12 を代入します。
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
-7 を 2 乗します。
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 と 12 を乗算します。
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
49 を -48 に加算します。
x=\frac{-\left(-7\right)±1}{2}
1 の平方根をとります。
x=\frac{7±1}{2}
-7 の反数は 7 です。
x=\frac{8}{2}
± が正の時の方程式 x=\frac{7±1}{2} の解を求めます。 7 を 1 に加算します。
x=4
8 を 2 で除算します。
x=\frac{6}{2}
± が負の時の方程式 x=\frac{7±1}{2} の解を求めます。 7 から 1 を減算します。
x=3
6 を 2 で除算します。
x=4 x=3
方程式が解けました。
3x^{2}-13x+12=\left(x-3\right)\times 2x
分配則を使用して x-3 と 3x-4 を乗算して同類項をまとめます。
3x^{2}-13x+12=\left(2x-6\right)x
分配則を使用して x-3 と 2 を乗算します。
3x^{2}-13x+12=2x^{2}-6x
分配則を使用して 2x-6 と x を乗算します。
3x^{2}-13x+12-2x^{2}=-6x
両辺から 2x^{2} を減算します。
x^{2}-13x+12=-6x
3x^{2} と -2x^{2} をまとめて x^{2} を求めます。
x^{2}-13x+12+6x=0
6x を両辺に追加します。
x^{2}-7x+12=0
-13x と 6x をまとめて -7x を求めます。
x^{2}-7x=-12
両辺から 12 を減算します。 ゼロから何かを引くとその負の数になります。
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
-7 (x 項の係数) を 2 で除算して -\frac{7}{2} を求めます。次に、方程式の両辺に -\frac{7}{2} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
-\frac{7}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
-12 を \frac{49}{4} に加算します。
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
因数x^{2}-7x+\frac{49}{4}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
方程式の両辺の平方根をとります。
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
簡約化します。
x=4 x=3
方程式の両辺に \frac{7}{2} を加算します。