f,x,g,h を解く
x=\frac{162}{325}+\frac{9}{325}i\approx 0.498461538+0.027692308i
f=-\frac{1}{3}i\approx -0.333333333i
g=\frac{727792}{2187}-\frac{18088}{243}i\approx 332.780978509-74.436213992i
h=i
共有
クリップボードにコピー済み
h=i
4 番目の方程式を考えなさい。 すべての変数項が左辺にくるように辺を入れ替えます。
i=f\left(-3\right)
3 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
\frac{i}{-3}=f
両辺を -3 で除算します。
-\frac{1}{3}i=f
i を -3 で除算して -\frac{1}{3}i を求めます。
f=-\frac{1}{3}i
すべての変数項が左辺にくるように辺を入れ替えます。
-\frac{1}{3}ix=-6x+3
最初の方程式を考えなさい。 変数の既知の値を数式に挿入します。
-\frac{1}{3}ix+6x=3
6x を両辺に追加します。
\left(6-\frac{1}{3}i\right)x=3
-\frac{1}{3}ix と 6x をまとめて \left(6-\frac{1}{3}i\right)x を求めます。
x=\frac{3}{6-\frac{1}{3}i}
両辺を 6-\frac{1}{3}i で除算します。
x=\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)}
\frac{3}{6-\frac{1}{3}i} の分子と分母の両方に、分母の複素共役 6+\frac{1}{3}i を乗算します。
x=\frac{18+i}{\frac{325}{9}}
\frac{3\left(6+\frac{1}{3}i\right)}{\left(6-\frac{1}{3}i\right)\left(6+\frac{1}{3}i\right)} で乗算を行います。
x=\frac{162}{325}+\frac{9}{325}i
18+i を \frac{325}{9} で除算して \frac{162}{325}+\frac{9}{325}i を求めます。
g\left(\frac{162}{325}+\frac{9}{325}i\right)=3\left(\frac{162}{325}+\frac{9}{325}i\right)+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
2 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{162}{325}+\frac{9}{325}i\right)^{-3}
3 と \frac{162}{325}+\frac{9}{325}i を乗算して \frac{486}{325}+\frac{27}{325}i を求めます。
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+21\left(\frac{214}{27}-\frac{971}{729}i\right)
\frac{162}{325}+\frac{9}{325}i の -3 乗を計算して \frac{214}{27}-\frac{971}{729}i を求めます。
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{486}{325}+\frac{27}{325}i+\left(\frac{1498}{9}-\frac{6797}{243}i\right)
21 と \frac{214}{27}-\frac{971}{729}i を乗算して \frac{1498}{9}-\frac{6797}{243}i を求めます。
g\left(\frac{162}{325}+\frac{9}{325}i\right)=\frac{491224}{2925}-\frac{2202464}{78975}i
\frac{486}{325}+\frac{27}{325}i と \frac{1498}{9}-\frac{6797}{243}i を加算して \frac{491224}{2925}-\frac{2202464}{78975}i を求めます。
g=\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i}
両辺を \frac{162}{325}+\frac{9}{325}i で除算します。
g=\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}
\frac{\frac{491224}{2925}-\frac{2202464}{78975}i}{\frac{162}{325}+\frac{9}{325}i} の分子と分母の両方に、分母の複素共役 \frac{162}{325}-\frac{9}{325}i を乗算します。
g=\frac{\frac{55984}{675}-\frac{18088}{975}i}{\frac{81}{325}}
\frac{\left(\frac{491224}{2925}-\frac{2202464}{78975}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)}{\left(\frac{162}{325}+\frac{9}{325}i\right)\left(\frac{162}{325}-\frac{9}{325}i\right)} で乗算を行います。
g=\frac{727792}{2187}-\frac{18088}{243}i
\frac{55984}{675}-\frac{18088}{975}i を \frac{81}{325} で除算して \frac{727792}{2187}-\frac{18088}{243}i を求めます。
f=-\frac{1}{3}i x=\frac{162}{325}+\frac{9}{325}i g=\frac{727792}{2187}-\frac{18088}{243}i h=i
連立方程式は解決しました。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}