メインコンテンツに移動します。
x,y,z,a,b,c,d を解く
Tick mark Image

Web 検索からの類似の問題

共有

35x-265+6=3
最初の方程式を考えなさい。 分配則を使用して 5 と 7x-53 を乗算します。
35x-259=3
-265 と 6 を加算して -259 を求めます。
35x=3+259
259 を両辺に追加します。
35x=262
3 と 259 を加算して 262 を求めます。
x=\frac{262}{35}
両辺を 35 で除算します。
y=\left(-7\times \frac{262}{35}-3\right)\left(-11+2\times \frac{262}{35}\right)
2 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
y=\left(-\frac{262}{5}-3\right)\left(-11+2\times \frac{262}{35}\right)
-7 と \frac{262}{35} を乗算して -\frac{262}{5} を求めます。
y=-\frac{277}{5}\left(-11+2\times \frac{262}{35}\right)
-\frac{262}{5} から 3 を減算して -\frac{277}{5} を求めます。
y=-\frac{277}{5}\left(-11+\frac{524}{35}\right)
2 と \frac{262}{35} を乗算して \frac{524}{35} を求めます。
y=-\frac{277}{5}\times \frac{139}{35}
-11 と \frac{524}{35} を加算して \frac{139}{35} を求めます。
y=-\frac{38503}{175}
-\frac{277}{5} と \frac{139}{35} を乗算して -\frac{38503}{175} を求めます。
z=-\frac{38503}{175}
3 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
a=-\frac{38503}{175}
4 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
b=-\frac{38503}{175}
5 番目の方程式を考えなさい。 変数の既知の値を数式に挿入します。
c=-\frac{38503}{175}
数式 (6) を考えなさい。 変数の既知の値を数式に挿入します。
d=-\frac{38503}{175}
数式 (7) を考えなさい。 変数の既知の値を数式に挿入します。
x=\frac{262}{35} y=-\frac{38503}{175} z=-\frac{38503}{175} a=-\frac{38503}{175} b=-\frac{38503}{175} c=-\frac{38503}{175} d=-\frac{38503}{175}
連立方程式は解決しました。