計算
3672e^{15}+468450\approx 12004300241.717580795
共有
クリップボードにコピー済み
\int 5x+8585+68e^{15}\mathrm{d}x
最初に不定積分を評価します。
\int 5x\mathrm{d}x+\int 8585\mathrm{d}x+\int 68e^{15}\mathrm{d}x
項別に合計を積分します。
5\int x\mathrm{d}x+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
各項の定数を因数分解します。
\frac{5x^{2}}{2}+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x\mathrm{d}x を \frac{x^{2}}{2} に置き換えます。 5 と \frac{x^{2}}{2} を乗算します。
\frac{5x^{2}}{2}+8585x+68\int e^{15}\mathrm{d}x
一般的な積分ルール \int a\mathrm{d}x=ax の表を使用して、8585 の積分を見つけます。
\frac{5x^{2}}{2}+8585x+68e^{15}x
一般的な積分ルール \int a\mathrm{d}x=ax の表を使用して、e^{15} の積分を見つけます。
\frac{5}{2}\times 45^{2}+8585\times 45+68e^{15}\times 45-\left(\frac{5}{2}\left(-9\right)^{2}+8585\left(-9\right)+68e^{15}\left(-9\right)\right)
定積分は、積分の上限において値が求められた式の不定積分から、積分の下限において値が求められた不定積分を減算したものです。
468450+3672e^{15}
簡約化します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}