計算
\frac{4}{3}\approx 1.333333333
共有
クリップボードにコピー済み
\int -y^{2}+1\mathrm{d}y
最初に不定積分を評価します。
\int -y^{2}\mathrm{d}y+\int 1\mathrm{d}y
項別に合計を積分します。
-\int y^{2}\mathrm{d}y+\int 1\mathrm{d}y
各項の定数を因数分解します。
-\frac{y^{3}}{3}+\int 1\mathrm{d}y
k\neq -1 は \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} なので、\int y^{2}\mathrm{d}y を \frac{y^{3}}{3} に置き換えます。 -1 と \frac{y^{3}}{3} を乗算します。
-\frac{y^{3}}{3}+y
一般的な積分ルール \int a\mathrm{d}y=ay の表を使用して、1 の積分を見つけます。
-\frac{1^{3}}{3}+1-\left(-\frac{\left(-1\right)^{3}}{3}-1\right)
定積分は、積分の上限において値が求められた式の不定積分から、積分の下限において値が求められた不定積分を減算したものです。
\frac{4}{3}
簡約化します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}