メインコンテンツに移動します。
計算
Tick mark Image
x で微分する
Tick mark Image

Web 検索からの類似の問題

共有

\int 2x\left(\left(x^{2}\right)^{3}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
二項定理の \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} を使用して \left(x^{2}+1\right)^{3} を展開します。
\int 2x\left(x^{6}+3\left(x^{2}\right)^{2}+3x^{2}+1\right)\mathrm{d}x
数値を累乗するには、指数を乗算します。2 と 3 を乗算して 6 を取得します。
\int 2x\left(x^{6}+3x^{4}+3x^{2}+1\right)\mathrm{d}x
数値を累乗するには、指数を乗算します。2 と 2 を乗算して 4 を取得します。
\int 2x^{7}+6x^{5}+6x^{3}+2x\mathrm{d}x
分配則を使用して 2x と x^{6}+3x^{4}+3x^{2}+1 を乗算します。
\int 2x^{7}\mathrm{d}x+\int 6x^{5}\mathrm{d}x+\int 6x^{3}\mathrm{d}x+\int 2x\mathrm{d}x
項別に合計を積分します。
2\int x^{7}\mathrm{d}x+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
各項の定数を因数分解します。
\frac{x^{8}}{4}+6\int x^{5}\mathrm{d}x+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{7}\mathrm{d}x を \frac{x^{8}}{8} に置き換えます。 2 と \frac{x^{8}}{8} を乗算します。
\frac{x^{8}}{4}+x^{6}+6\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{5}\mathrm{d}x を \frac{x^{6}}{6} に置き換えます。 6 と \frac{x^{6}}{6} を乗算します。
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+2\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{3}\mathrm{d}x を \frac{x^{4}}{4} に置き換えます。 6 と \frac{x^{4}}{4} を乗算します。
\frac{x^{8}}{4}+x^{6}+\frac{3x^{4}}{2}+x^{2}
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x\mathrm{d}x を \frac{x^{2}}{2} に置き換えます。 2 と \frac{x^{2}}{2} を乗算します。
x^{2}+\frac{3x^{4}}{2}+x^{6}+\frac{x^{8}}{4}+С
F\left(x\right) が f\left(x\right) の不定積分である場合、f\left(x\right) のすべての不定積分のセットは F\left(x\right)+C によって与えられます。したがって、積分定数 C\in \mathrm{R} を結果に追加します。