a を解く
\left\{\begin{matrix}a=\frac{-b\sin(x)e^{x}+xy+С}{\cos(x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\\a\in \mathrm{R}\text{, }&С=b\sin(x)e^{x}-xy\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi \left(2n_{1}+1\right)}{2}\end{matrix}\right.
b を解く
\left\{\begin{matrix}b=\frac{-a\cos(x)e^{x}+xy+С}{\sin(x)e^{x}}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\\b\in \mathrm{R}\text{, }&С=a\cos(x)e^{x}-xy\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
共有
クリップボードにコピー済み
\int y\mathrm{d}x=e^{x}a\cos(x)+e^{x}b\sin(x)
分配則を使用して e^{x} と a\cos(x)+b\sin(x) を乗算します。
e^{x}a\cos(x)+e^{x}b\sin(x)=\int y\mathrm{d}x
すべての変数項が左辺にくるように辺を入れ替えます。
e^{x}a\cos(x)=\int y\mathrm{d}x-e^{x}b\sin(x)
両辺から e^{x}b\sin(x) を減算します。
\cos(x)e^{x}a=-b\sin(x)e^{x}+xy+С
方程式は標準形です。
\frac{\cos(x)e^{x}a}{\cos(x)e^{x}}=\frac{-b\sin(x)e^{x}+xy+С}{\cos(x)e^{x}}
両辺を e^{x}\cos(x) で除算します。
a=\frac{-b\sin(x)e^{x}+xy+С}{\cos(x)e^{x}}
e^{x}\cos(x) で除算すると、e^{x}\cos(x) での乗算を元に戻します。
a=\frac{\frac{xy+С}{e^{x}}-b\sin(x)}{\cos(x)}
yx+С-e^{x}b\sin(x) を e^{x}\cos(x) で除算します。
\int y\mathrm{d}x=e^{x}a\cos(x)+e^{x}b\sin(x)
分配則を使用して e^{x} と a\cos(x)+b\sin(x) を乗算します。
e^{x}a\cos(x)+e^{x}b\sin(x)=\int y\mathrm{d}x
すべての変数項が左辺にくるように辺を入れ替えます。
e^{x}b\sin(x)=\int y\mathrm{d}x-e^{x}a\cos(x)
両辺から e^{x}a\cos(x) を減算します。
\sin(x)e^{x}b=-a\cos(x)e^{x}+xy+С
方程式は標準形です。
\frac{\sin(x)e^{x}b}{\sin(x)e^{x}}=\frac{-a\cos(x)e^{x}+xy+С}{\sin(x)e^{x}}
両辺を e^{x}\sin(x) で除算します。
b=\frac{-a\cos(x)e^{x}+xy+С}{\sin(x)e^{x}}
e^{x}\sin(x) で除算すると、e^{x}\sin(x) での乗算を元に戻します。
b=\frac{\frac{xy+С}{e^{x}}-a\cos(x)}{\sin(x)}
yx+С-e^{x}a\cos(x) を e^{x}\sin(x) で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}