メインコンテンツに移動します。
計算
Tick mark Image
x で微分する
Tick mark Image

Web 検索からの類似の問題

共有

\int x\mathrm{d}x+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
項別に合計を積分します。
\frac{x^{2}}{2}+\int \sqrt[3]{x}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x\mathrm{d}x を \frac{x^{2}}{2} に置き換えます。
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}+\int \frac{1}{x^{2}}\mathrm{d}x
\sqrt[3]{x} を x^{\frac{1}{3}} に書き換えます。 k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{\frac{1}{3}}\mathrm{d}x を \frac{x^{\frac{4}{3}}}{\frac{4}{3}} に置き換えます。 簡約化します。
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int \frac{1}{x^{2}}\mathrm{d}x を -\frac{1}{x} に置き換えます。
\frac{x^{2}}{2}+\frac{3x^{\frac{4}{3}}}{4}-\frac{1}{x}+С
F\left(x\right) が f\left(x\right) の不定積分である場合、f\left(x\right) のすべての不定積分のセットは F\left(x\right)+C によって与えられます。したがって、積分定数 C\in \mathrm{R} を結果に追加します。