メインコンテンツに移動します。
n を解く
Tick mark Image

Web 検索からの類似の問題

共有

n=3\sqrt{\frac{3}{8}}\left(n+3\right)
0 による除算は定義されていないため、変数 n を -3 と等しくすることはできません。 方程式の両辺に n+3 を乗算します。
n=3\times \frac{\sqrt{3}}{\sqrt{8}}\left(n+3\right)
除算の平方根 \sqrt{\frac{3}{8}} を平方根の除算 \frac{\sqrt{3}}{\sqrt{8}} に書き換えます。
n=3\times \frac{\sqrt{3}}{2\sqrt{2}}\left(n+3\right)
8=2^{2}\times 2 を因数分解します。 積の平方根 \sqrt{2^{2}\times 2} を平方根の積 \sqrt{2^{2}}\sqrt{2} に書き換えます。 2^{2} の平方根をとります。
n=3\times \frac{\sqrt{3}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\left(n+3\right)
分子と分母に \sqrt{2} を乗算して、\frac{\sqrt{3}}{2\sqrt{2}} の分母を有理化します。
n=3\times \frac{\sqrt{3}\sqrt{2}}{2\times 2}\left(n+3\right)
\sqrt{2} の平方は 2 です。
n=3\times \frac{\sqrt{6}}{2\times 2}\left(n+3\right)
\sqrt{3} と \sqrt{2} を乗算するには、平方根の中の数値を乗算します。
n=3\times \frac{\sqrt{6}}{4}\left(n+3\right)
2 と 2 を乗算して 4 を求めます。
n=\frac{3\sqrt{6}}{4}\left(n+3\right)
3\times \frac{\sqrt{6}}{4} を 1 つの分数で表現します。
n=\frac{3\sqrt{6}\left(n+3\right)}{4}
\frac{3\sqrt{6}}{4}\left(n+3\right) を 1 つの分数で表現します。
n=\frac{3\sqrt{6}n+9\sqrt{6}}{4}
分配則を使用して 3\sqrt{6} と n+3 を乗算します。
n-\frac{3\sqrt{6}n+9\sqrt{6}}{4}=0
両辺から \frac{3\sqrt{6}n+9\sqrt{6}}{4} を減算します。
4n-\left(3\sqrt{6}n+9\sqrt{6}\right)=0
方程式の両辺に 4 を乗算します。
4n-3\sqrt{6}n-9\sqrt{6}=0
3\sqrt{6}n+9\sqrt{6} の反数を求めるには、各項の半数を求めます。
4n-3\sqrt{6}n=9\sqrt{6}
9\sqrt{6} を両辺に追加します。 0 に何を足しても結果は変わりません。
\left(4-3\sqrt{6}\right)n=9\sqrt{6}
n を含むすべての項をまとめます。
\frac{\left(4-3\sqrt{6}\right)n}{4-3\sqrt{6}}=\frac{9\sqrt{6}}{4-3\sqrt{6}}
両辺を 4-3\sqrt{6} で除算します。
n=\frac{9\sqrt{6}}{4-3\sqrt{6}}
4-3\sqrt{6} で除算すると、4-3\sqrt{6} での乗算を元に戻します。
n=\frac{-18\sqrt{6}-81}{19}
9\sqrt{6} を 4-3\sqrt{6} で除算します。