計算
-\frac{3x\left(8x^{3}-1\right)}{2\left(x^{3}+1\right)}
因数
-\frac{3x\left(2x-1\right)\left(4x^{2}+2x+1\right)}{2\left(x+1\right)\left(x^{2}-x+1\right)}
グラフ
共有
クリップボードにコピー済み
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{1}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
同じ底の累乗を乗算するには、分子を加算します。2 と 2 を加算して 4 を取得します。
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{1}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
3 と 72 を乗算して 216 を求めます。
\frac{24x\left(2x-1\right)\sqrt{x^{3}+1}\left(-4x^{2}-2x-1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
まだ因数分解されていない式を因数分解します。
\frac{3x\left(2x-1\right)\left(-4x^{2}-2x-1\right)}{2\left(x^{3}+1\right)}
分子と分母の両方の 8\sqrt{x^{3}+1} を約分します。
\frac{-24x^{4}+3x}{2x^{3}+2}
式を展開します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}