メインコンテンツに移動します。
計算
Tick mark Image
因数
Tick mark Image

Web 検索からの類似の問題

共有

\frac{1}{216}\left(1-3\sqrt{17}+3\left(\sqrt{17}\right)^{2}-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
二項定理の \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} を使用して \left(1-\sqrt{17}\right)^{3} を展開します。
\frac{1}{216}\left(1-3\sqrt{17}+3\times 17-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
\sqrt{17} の平方は 17 です。
\frac{1}{216}\left(1-3\sqrt{17}+51-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
3 と 17 を乗算して 51 を求めます。
\frac{1}{216}\left(52-3\sqrt{17}-\left(\sqrt{17}\right)^{3}\right)+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
1 と 51 を加算して 52 を求めます。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+\sqrt{17}\right)^{3}
分配則を使用して \frac{1}{216} と 52-3\sqrt{17}-\left(\sqrt{17}\right)^{3} を乗算します。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+3\left(\sqrt{17}\right)^{2}+\left(\sqrt{17}\right)^{3}\right)
二項定理の \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} を使用して \left(1+\sqrt{17}\right)^{3} を展開します。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+3\times 17+\left(\sqrt{17}\right)^{3}\right)
\sqrt{17} の平方は 17 です。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(1+3\sqrt{17}+51+\left(\sqrt{17}\right)^{3}\right)
3 と 17 を乗算して 51 を求めます。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(52+3\sqrt{17}+\left(\sqrt{17}\right)^{3}\right)
1 と 51 を加算して 52 を求めます。
\frac{13}{54}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{13}{54}+\frac{1}{72}\sqrt{17}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
分配則を使用して \frac{1}{216} と 52+3\sqrt{17}+\left(\sqrt{17}\right)^{3} を乗算します。
\frac{13}{27}-\frac{1}{72}\sqrt{17}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{72}\sqrt{17}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
\frac{13}{54} と \frac{13}{54} を加算して \frac{13}{27} を求めます。
\frac{13}{27}-\frac{1}{216}\left(\sqrt{17}\right)^{3}+\frac{1}{216}\left(\sqrt{17}\right)^{3}
-\frac{1}{72}\sqrt{17} と \frac{1}{72}\sqrt{17} をまとめて 0 を求めます。
\frac{13}{27}
-\frac{1}{216}\left(\sqrt{17}\right)^{3} と \frac{1}{216}\left(\sqrt{17}\right)^{3} をまとめて 0 を求めます。