x を解く
x=\frac{61}{3\left(y-4\right)}
y\neq 4
y を解く
y=4+\frac{61}{3x}
x\neq 0
グラフ
共有
クリップボードにコピー済み
3\left(xy-1\right)-2\left(6x-1\right)=60
方程式の両辺を 6 (2,3 の最小公倍数) で乗算します。
3xy-3-2\left(6x-1\right)=60
分配則を使用して 3 と xy-1 を乗算します。
3xy-3-12x+2=60
分配則を使用して -2 と 6x-1 を乗算します。
3xy-1-12x=60
-3 と 2 を加算して -1 を求めます。
3xy-12x=60+1
1 を両辺に追加します。
3xy-12x=61
60 と 1 を加算して 61 を求めます。
\left(3y-12\right)x=61
x を含むすべての項をまとめます。
\frac{\left(3y-12\right)x}{3y-12}=\frac{61}{3y-12}
両辺を 3y-12 で除算します。
x=\frac{61}{3y-12}
3y-12 で除算すると、3y-12 での乗算を元に戻します。
x=\frac{61}{3\left(y-4\right)}
61 を 3y-12 で除算します。
3\left(xy-1\right)-2\left(6x-1\right)=60
方程式の両辺を 6 (2,3 の最小公倍数) で乗算します。
3xy-3-2\left(6x-1\right)=60
分配則を使用して 3 と xy-1 を乗算します。
3xy-3-12x+2=60
分配則を使用して -2 と 6x-1 を乗算します。
3xy-1-12x=60
-3 と 2 を加算して -1 を求めます。
3xy-12x=60+1
1 を両辺に追加します。
3xy-12x=61
60 と 1 を加算して 61 を求めます。
3xy=61+12x
12x を両辺に追加します。
3xy=12x+61
方程式は標準形です。
\frac{3xy}{3x}=\frac{12x+61}{3x}
両辺を 3x で除算します。
y=\frac{12x+61}{3x}
3x で除算すると、3x での乗算を元に戻します。
y=4+\frac{61}{3x}
61+12x を 3x で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}