計算
\frac{-4x^{5}+14x^{4}-4x^{3}+26x^{2}-12x-9}{x\left(x-3\right)\left(2x-1\right)\left(4x^{2}-9\right)}
展開
\frac{-4x^{5}+14x^{4}-4x^{3}+26x^{2}-12x-9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)\left(2x^{2}-3x\right)}
グラフ
共有
クリップボードにコピー済み
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
2x^{2}-7x+3 を因数分解します。 4x^{2}+4x-3 を因数分解します。
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(x-3\right)\left(2x-1\right) と \left(2x-1\right)\left(2x+3\right) の最小公倍数は \left(x-3\right)\left(2x-1\right)\left(2x+3\right) です。 \frac{x}{\left(x-3\right)\left(2x-1\right)} と \frac{2x+3}{2x+3} を乗算します。 \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} と \frac{x-3}{x-3} を乗算します。
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} は分母が同じなので、分子を足して加算します。
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
x\left(2x+3\right)+\left(x-3\right)\left(x-3\right) で乗算を行います。
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
2x^{2}+3x+x^{2}-3x-3x+9 の同類項をまとめます。
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
2x^{2}-3x を因数分解します。
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(x-3\right)\left(2x-1\right)\left(2x+3\right) と x\left(2x-3\right) の最小公倍数は x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right) です。 \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{x\left(2x-3\right)}{x\left(2x-3\right)} を乗算します。 \frac{x^{2}+1}{x\left(2x-3\right)} と \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} を乗算します。
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} は分母が同じなので、分子を引いて減算します。
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right) で乗算を行います。
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9 の同類項をまとめます。
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right) を展開します。
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
2x^{2}-7x+3 を因数分解します。 4x^{2}+4x-3 を因数分解します。
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(x-3\right)\left(2x-1\right) と \left(2x-1\right)\left(2x+3\right) の最小公倍数は \left(x-3\right)\left(2x-1\right)\left(2x+3\right) です。 \frac{x}{\left(x-3\right)\left(2x-1\right)} と \frac{2x+3}{2x+3} を乗算します。 \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} と \frac{x-3}{x-3} を乗算します。
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} は分母が同じなので、分子を足して加算します。
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
x\left(2x+3\right)+\left(x-3\right)\left(x-3\right) で乗算を行います。
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
2x^{2}+3x+x^{2}-3x-3x+9 の同類項をまとめます。
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
2x^{2}-3x を因数分解します。
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(x-3\right)\left(2x-1\right)\left(2x+3\right) と x\left(2x-3\right) の最小公倍数は x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right) です。 \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{x\left(2x-3\right)}{x\left(2x-3\right)} を乗算します。 \frac{x^{2}+1}{x\left(2x-3\right)} と \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} を乗算します。
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} と \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} は分母が同じなので、分子を引いて減算します。
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right) で乗算を行います。
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9 の同類項をまとめます。
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right) を展開します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}