計算
\frac{2\left(-t^{4}+37t^{3}-455t^{2}+2251t-4024\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
展開
-\frac{2\left(t^{4}-37t^{3}+455t^{2}-2251t+4024\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
共有
クリップボードにコピー済み
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
式の加算または減算を行うには、式を展開して分母を同じにします。 t-17 と t-11 の最小公倍数は \left(t-17\right)\left(t-11\right) です。 \frac{t-15}{t-17} と \frac{t-11}{t-11} を乗算します。 \frac{t-9}{t-11} と \frac{t-17}{t-17} を乗算します。
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} と \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} は分母が同じなので、分子を引いて減算します。
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right) で乗算を行います。
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
t^{2}-11t-15t+165-t^{2}+17t+9t-153 の同類項をまとめます。
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(t-17\right)\left(t-11\right) と t-5 の最小公倍数は \left(t-17\right)\left(t-11\right)\left(t-5\right) です。 \frac{12}{\left(t-17\right)\left(t-11\right)} と \frac{t-5}{t-5} を乗算します。 \frac{t-3}{t-5} と \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} を乗算します。
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} と \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} は分母が同じなので、分子を引いて減算します。
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right) で乗算を行います。
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561 の同類項をまとめます。
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(t-17\right)\left(t-11\right)\left(t-5\right) と t-3 の最小公倍数は \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) です。 \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} と \frac{t-3}{t-3} を乗算します。 \frac{t-7}{t-3} と \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} を乗算します。
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} と \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} は分母が同じなので、分子を引いて減算します。
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right) で乗算を行います。
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545 の同類項をまとめます。
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) を展開します。
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)}-\frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
式の加算または減算を行うには、式を展開して分母を同じにします。 t-17 と t-11 の最小公倍数は \left(t-17\right)\left(t-11\right) です。 \frac{t-15}{t-17} と \frac{t-11}{t-11} を乗算します。 \frac{t-9}{t-11} と \frac{t-17}{t-17} を乗算します。
\frac{\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\frac{\left(t-15\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} と \frac{\left(t-9\right)\left(t-17\right)}{\left(t-17\right)\left(t-11\right)} は分母が同じなので、分子を引いて減算します。
\frac{t^{2}-11t-15t+165-t^{2}+17t+9t-153}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
\left(t-15\right)\left(t-11\right)-\left(t-9\right)\left(t-17\right) で乗算を行います。
\frac{12}{\left(t-17\right)\left(t-11\right)}-\frac{t-3}{t-5}-\frac{t-7}{t-3}
t^{2}-11t-15t+165-t^{2}+17t+9t-153 の同類項をまとめます。
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(t-17\right)\left(t-11\right) と t-5 の最小公倍数は \left(t-17\right)\left(t-11\right)\left(t-5\right) です。 \frac{12}{\left(t-17\right)\left(t-11\right)} と \frac{t-5}{t-5} を乗算します。 \frac{t-3}{t-5} と \frac{\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)} を乗算します。
\frac{12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
\frac{12\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} と \frac{\left(t-3\right)\left(t-17\right)\left(t-11\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} は分母が同じなので、分子を引いて減算します。
\frac{12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12\left(t-5\right)-\left(t-3\right)\left(t-17\right)\left(t-11\right) で乗算を行います。
\frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)}-\frac{t-7}{t-3}
12t-60-t^{3}+28t^{2}-187t+3t^{2}-84t+561 の同類項をまとめます。
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}-\frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
式の加算または減算を行うには、式を展開して分母を同じにします。 \left(t-17\right)\left(t-11\right)\left(t-5\right) と t-3 の最小公倍数は \left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) です。 \frac{-259t+501-t^{3}+31t^{2}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} と \frac{t-3}{t-3} を乗算します。 \frac{t-7}{t-3} と \frac{\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)} を乗算します。
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\frac{\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} と \frac{\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right)}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)} は分母が同じなので、分子を引いて減算します。
\frac{-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
\left(-259t+501-t^{3}+31t^{2}\right)\left(t-3\right)-\left(t-7\right)\left(t-17\right)\left(t-11\right)\left(t-5\right) で乗算を行います。
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right)}
-259t^{2}+777t+501t-1503-t^{4}+3t^{3}+31t^{3}-93t^{2}-t^{4}+33t^{3}-327t^{2}+935t+7t^{3}-231t^{2}+2289t-6545 の同類項をまとめます。
\frac{-910t^{2}+4502t-8048-2t^{4}+74t^{3}}{t^{4}-36t^{3}+426t^{2}-1916t+2805}
\left(t-17\right)\left(t-11\right)\left(t-5\right)\left(t-3\right) を展開します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}