メインコンテンツに移動します。
d を解く
Tick mark Image
v を解く
Tick mark Image

Web 検索からの類似の問題

共有

dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=dxv+xdv
0 による除算は定義されていないため、変数 d を 0 と等しくすることはできません。 方程式の両辺に dx を乗算します。
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=2dxv
dxv と xdv をまとめて 2dxv を求めます。
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}-2dxv=0
両辺から 2dxv を減算します。
\left(x\frac{\mathrm{d}(y)}{\mathrm{d}x}-2xv\right)d=0
d を含むすべての項をまとめます。
\left(-2vx\right)d=0
方程式は標準形です。
d=0
0 を -2xv で除算します。
d\in \emptyset
変数 d を 0 と等しくすることはできません。
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=dxv+xdv
方程式の両辺に dx を乗算します。
dx\frac{\mathrm{d}(y)}{\mathrm{d}x}=2dxv
dxv と xdv をまとめて 2dxv を求めます。
2dxv=dx\frac{\mathrm{d}(y)}{\mathrm{d}x}
すべての変数項が左辺にくるように辺を入れ替えます。
2dxv=0
方程式は標準形です。
v=0
0 を 2dx で除算します。