メインコンテンツに移動します。
計算
Tick mark Image
x で微分する
Tick mark Image

Web 検索からの類似の問題

共有

\frac{\mathrm{d}}{\mathrm{d}x}(\left(8x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
\left(8x^{6}-9x^{10}\right)\left(8x^{6}+9x^{10}\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}\left(x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
\left(8x^{6}\right)^{2} を展開します。
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}x^{12}-\left(9x^{10}\right)^{2})
数値を累乗するには、指数を乗算します。6 と 2 を乗算して 12 を取得します。
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-\left(9x^{10}\right)^{2})
8 の 2 乗を計算して 64 を求めます。
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}\left(x^{10}\right)^{2})
\left(9x^{10}\right)^{2} を展開します。
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}x^{20})
数値を累乗するには、指数を乗算します。10 と 2 を乗算して 20 を取得します。
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-81x^{20})
9 の 2 乗を計算して 81 を求めます。
12\times 64x^{12-1}+20\left(-81\right)x^{20-1}
多項式の微分係数は、その項の微分係数の和です。定数項の微分係数は 0 です。ax^{n} の微分係数は nax^{n-1} です。
768x^{12-1}+20\left(-81\right)x^{20-1}
12 と 64 を乗算します。
768x^{11}+20\left(-81\right)x^{20-1}
12 から 1 を減算します。
768x^{11}-1620x^{20-1}
20 と -81 を乗算します。
768x^{11}-1620x^{19}
20 から 1 を減算します。