P_1 を解く
\left\{\begin{matrix}P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}\text{, }&T_{2}\neq 0\text{ and }V_{1}\neq 0\text{ and }T_{1}\neq 0\\P_{1}\in \mathrm{R}\text{, }&\left(V_{2}=0\text{ or }P_{2}=0\right)\text{ and }V_{1}=0\text{ and }T_{2}\neq 0\text{ and }T_{1}\neq 0\end{matrix}\right.
P_2 を解く
\left\{\begin{matrix}P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}\text{, }&T_{1}\neq 0\text{ and }V_{2}\neq 0\text{ and }T_{2}\neq 0\\P_{2}\in \mathrm{R}\text{, }&\left(V_{1}=0\text{ or }P_{1}=0\right)\text{ and }V_{2}=0\text{ and }T_{1}\neq 0\text{ and }T_{2}\neq 0\end{matrix}\right.
共有
クリップボードにコピー済み
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
方程式の両辺を T_{1}T_{2} (T_{1},T_{2} の最小公倍数) で乗算します。
P_{1}T_{2}V_{1}=P_{2}T_{1}V_{2}
項の順序を変更します。
T_{2}V_{1}P_{1}=P_{2}T_{1}V_{2}
方程式は標準形です。
\frac{T_{2}V_{1}P_{1}}{T_{2}V_{1}}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
両辺を T_{2}V_{1} で除算します。
P_{1}=\frac{P_{2}T_{1}V_{2}}{T_{2}V_{1}}
T_{2}V_{1} で除算すると、T_{2}V_{1} での乗算を元に戻します。
T_{2}P_{1}V_{1}=T_{1}P_{2}V_{2}
方程式の両辺を T_{1}T_{2} (T_{1},T_{2} の最小公倍数) で乗算します。
T_{1}P_{2}V_{2}=T_{2}P_{1}V_{1}
すべての変数項が左辺にくるように辺を入れ替えます。
T_{1}V_{2}P_{2}=P_{1}T_{2}V_{1}
方程式は標準形です。
\frac{T_{1}V_{2}P_{2}}{T_{1}V_{2}}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
両辺を T_{1}V_{2} で除算します。
P_{2}=\frac{P_{1}T_{2}V_{1}}{T_{1}V_{2}}
T_{1}V_{2} で除算すると、T_{1}V_{2} での乗算を元に戻します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}