x を解く
x = \frac{\sqrt{5} + 1}{2} \approx 1.618033989
x=\frac{1-\sqrt{5}}{2}\approx -0.618033989
グラフ
共有
クリップボードにコピー済み
x-1+\left(x+1\right)\times 2=x^{2}+2x
0 による除算は定義されていないため、変数 x を -1,1 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-1\right)\left(x+1\right) (x+1,x-1,x^{2}-1 の最小公倍数) で乗算します。
x-1+2x+2=x^{2}+2x
分配則を使用して x+1 と 2 を乗算します。
3x-1+2=x^{2}+2x
x と 2x をまとめて 3x を求めます。
3x+1=x^{2}+2x
-1 と 2 を加算して 1 を求めます。
3x+1-x^{2}=2x
両辺から x^{2} を減算します。
3x+1-x^{2}-2x=0
両辺から 2x を減算します。
x+1-x^{2}=0
3x と -2x をまとめて x を求めます。
-x^{2}+x+1=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)}}{2\left(-1\right)}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に -1 を代入し、b に 1 を代入し、c に 1 を代入します。
x=\frac{-1±\sqrt{1-4\left(-1\right)}}{2\left(-1\right)}
1 を 2 乗します。
x=\frac{-1±\sqrt{1+4}}{2\left(-1\right)}
-4 と -1 を乗算します。
x=\frac{-1±\sqrt{5}}{2\left(-1\right)}
1 を 4 に加算します。
x=\frac{-1±\sqrt{5}}{-2}
2 と -1 を乗算します。
x=\frac{\sqrt{5}-1}{-2}
± が正の時の方程式 x=\frac{-1±\sqrt{5}}{-2} の解を求めます。 -1 を \sqrt{5} に加算します。
x=\frac{1-\sqrt{5}}{2}
-1+\sqrt{5} を -2 で除算します。
x=\frac{-\sqrt{5}-1}{-2}
± が負の時の方程式 x=\frac{-1±\sqrt{5}}{-2} の解を求めます。 -1 から \sqrt{5} を減算します。
x=\frac{\sqrt{5}+1}{2}
-1-\sqrt{5} を -2 で除算します。
x=\frac{1-\sqrt{5}}{2} x=\frac{\sqrt{5}+1}{2}
方程式が解けました。
x-1+\left(x+1\right)\times 2=x^{2}+2x
0 による除算は定義されていないため、変数 x を -1,1 のいずれの値とも等しくすることはできません。 方程式の両辺を \left(x-1\right)\left(x+1\right) (x+1,x-1,x^{2}-1 の最小公倍数) で乗算します。
x-1+2x+2=x^{2}+2x
分配則を使用して x+1 と 2 を乗算します。
3x-1+2=x^{2}+2x
x と 2x をまとめて 3x を求めます。
3x+1=x^{2}+2x
-1 と 2 を加算して 1 を求めます。
3x+1-x^{2}=2x
両辺から x^{2} を減算します。
3x+1-x^{2}-2x=0
両辺から 2x を減算します。
x+1-x^{2}=0
3x と -2x をまとめて x を求めます。
x-x^{2}=-1
両辺から 1 を減算します。 ゼロから何かを引くとその負の数になります。
-x^{2}+x=-1
このような二次方程式は、平方完成により解くことができます。平方完成するには、方程式は最初に x^{2}+bx=c の形式になっている必要があります。
\frac{-x^{2}+x}{-1}=-\frac{1}{-1}
両辺を -1 で除算します。
x^{2}+\frac{1}{-1}x=-\frac{1}{-1}
-1 で除算すると、-1 での乗算を元に戻します。
x^{2}-x=-\frac{1}{-1}
1 を -1 で除算します。
x^{2}-x=1
-1 を -1 で除算します。
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1 (x 項の係数) を 2 で除算して -\frac{1}{2} を求めます。次に、方程式の両辺に -\frac{1}{2} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-x+\frac{1}{4}=1+\frac{1}{4}
-\frac{1}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}-x+\frac{1}{4}=\frac{5}{4}
1 を \frac{1}{4} に加算します。
\left(x-\frac{1}{2}\right)^{2}=\frac{5}{4}
因数x^{2}-x+\frac{1}{4}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
方程式の両辺の平方根をとります。
x-\frac{1}{2}=\frac{\sqrt{5}}{2} x-\frac{1}{2}=-\frac{\sqrt{5}}{2}
簡約化します。
x=\frac{\sqrt{5}+1}{2} x=\frac{1-\sqrt{5}}{2}
方程式の両辺に \frac{1}{2} を加算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}