因数
\frac{-6\sqrt{x^{2}-4}+\sqrt{3}}{6}
計算
-\sqrt{x^{2}-4}+\frac{\sqrt{3}}{6}
グラフ
共有
クリップボードにコピー済み
factor(\frac{\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}-\sqrt{x^{2}-4})
分子と分母に \sqrt{3} を乗算して、\frac{1}{2\sqrt{3}} の分母を有理化します。
factor(\frac{\sqrt{3}}{2\times 3}-\sqrt{x^{2}-4})
\sqrt{3} の平方は 3 です。
factor(\frac{\sqrt{3}}{6}-\sqrt{x^{2}-4})
2 と 3 を乗算して 6 を求めます。
\frac{\sqrt{3}-6\sqrt{x^{2}-4}}{6}
\frac{1}{6} をくくり出します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}