計算
\frac{x+2y}{\left(x-2y\right)\left(x-3y\right)}
展開
\frac{x+2y}{\left(2y-x\right)\left(3y-x\right)}
共有
クリップボードにコピー済み
\frac{\left(x-2y\right)^{2}}{\left(x-3y\right)\left(x-2y\right)}\times \frac{x+2y}{x^{2}-4xy+4y^{2}}
まだ因数分解されていない式を \frac{\left(x-2y\right)^{2}}{x^{2}-5xy+6y^{2}} に因数分解します。
\frac{x-2y}{x-3y}\times \frac{x+2y}{x^{2}-4xy+4y^{2}}
分子と分母の両方の x-2y を約分します。
\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-3y\right)\left(x^{2}-4xy+4y^{2}\right)}
分子と分子、分母と分母を乗算して、\frac{x-2y}{x-3y} と \frac{x+2y}{x^{2}-4xy+4y^{2}} を乗算します。
\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-3y\right)\left(x-2y\right)^{2}}
まだ因数分解されていない式を因数分解します。
\frac{x+2y}{\left(x-3y\right)\left(x-2y\right)}
分子と分母の両方の x-2y を約分します。
\frac{x+2y}{x^{2}-5xy+6y^{2}}
式を展開します。
\frac{\left(x-2y\right)^{2}}{\left(x-3y\right)\left(x-2y\right)}\times \frac{x+2y}{x^{2}-4xy+4y^{2}}
まだ因数分解されていない式を \frac{\left(x-2y\right)^{2}}{x^{2}-5xy+6y^{2}} に因数分解します。
\frac{x-2y}{x-3y}\times \frac{x+2y}{x^{2}-4xy+4y^{2}}
分子と分母の両方の x-2y を約分します。
\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-3y\right)\left(x^{2}-4xy+4y^{2}\right)}
分子と分子、分母と分母を乗算して、\frac{x-2y}{x-3y} と \frac{x+2y}{x^{2}-4xy+4y^{2}} を乗算します。
\frac{\left(x-2y\right)\left(x+2y\right)}{\left(x-3y\right)\left(x-2y\right)^{2}}
まだ因数分解されていない式を因数分解します。
\frac{x+2y}{\left(x-3y\right)\left(x-2y\right)}
分子と分母の両方の x-2y を約分します。
\frac{x+2y}{x^{2}-5xy+6y^{2}}
式を展開します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}