計算
\frac{x}{y}
展開
\frac{x}{y}
共有
クリップボードにコピー済み
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
分子と分子、分母と分母を乗算して、\frac{4x^{2}+x-14}{6xy-14y} と \frac{4x^{2}}{x^{2}-4} を乗算します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
分子と分子、分母と分母を乗算して、\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} と \frac{x-2}{4x-7} を乗算します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
まだ因数分解されていない式を \frac{2x^{2}+4x}{3x^{2}-x-14} に因数分解します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
分子と分母の両方の x+2 を約分します。
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} を \frac{2x}{3x-7} で除算するには、\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} に \frac{2x}{3x-7} の逆数を乗算します。
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
分子と分母の両方の 2x を約分します。
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
まだ因数分解されていない式を因数分解します。
\frac{x}{y}
分子と分母の両方の 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) を約分します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)}\times \frac{x-2}{4x-7}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
分子と分子、分母と分母を乗算して、\frac{4x^{2}+x-14}{6xy-14y} と \frac{4x^{2}}{x^{2}-4} を乗算します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x^{2}+4x}{3x^{2}-x-14}}
分子と分子、分母と分母を乗算して、\frac{\left(4x^{2}+x-14\right)\times 4x^{2}}{\left(6xy-14y\right)\left(x^{2}-4\right)} と \frac{x-2}{4x-7} を乗算します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x\left(x+2\right)}{\left(3x-7\right)\left(x+2\right)}}
まだ因数分解されていない式を \frac{2x^{2}+4x}{3x^{2}-x-14} に因数分解します。
\frac{\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)}}{\frac{2x}{3x-7}}
分子と分母の両方の x+2 を約分します。
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)\left(3x-7\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)\times 2x}
\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} を \frac{2x}{3x-7} で除算するには、\frac{\left(4x^{2}+x-14\right)\times 4x^{2}\left(x-2\right)}{\left(6xy-14y\right)\left(x^{2}-4\right)\left(4x-7\right)} に \frac{2x}{3x-7} の逆数を乗算します。
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x^{2}+x-14\right)}{\left(4x-7\right)\left(x^{2}-4\right)\left(6xy-14y\right)}
分子と分母の両方の 2x を約分します。
\frac{2x\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}{2y\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right)}
まだ因数分解されていない式を因数分解します。
\frac{x}{y}
分子と分母の両方の 2\left(x-2\right)\left(3x-7\right)\left(4x-7\right)\left(x+2\right) を約分します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}