q を解く
\left\{\begin{matrix}q=\frac{\alpha t^{2}}{x\Delta }\text{, }&t\neq 0\text{ and }\alpha \neq 0\text{ and }x\neq 0\text{ and }\Delta \neq 0\\q\neq 0\text{, }&\left(\Delta =0\text{ and }t=0\right)\text{ or }\left(x=0\text{ and }t=0\right)\text{ or }\left(x=0\text{ and }\alpha =0\text{ and }t\neq 0\right)\text{ or }\left(\Delta =0\text{ and }\alpha =0\text{ and }t\neq 0\right)\end{matrix}\right.
t を解く (複素数の解)
\left\{\begin{matrix}t=-\alpha ^{-\frac{1}{2}}\sqrt{q}\sqrt{x}\sqrt{\Delta }\text{; }t=\alpha ^{-\frac{1}{2}}\sqrt{q}\sqrt{x}\sqrt{\Delta }\text{, }&q\neq 0\text{ and }\alpha \neq 0\\t\in \mathrm{C}\text{, }&\left(x=0\text{ or }\Delta =0\right)\text{ and }\alpha =0\text{ and }q\neq 0\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
\Delta xq=1\alpha t^{2}
0 による除算は定義されていないため、変数 q を 0 と等しくすることはできません。 方程式の両辺に q を乗算します。
qx\Delta =\alpha t^{2}
項の順序を変更します。
x\Delta q=\alpha t^{2}
方程式は標準形です。
\frac{x\Delta q}{x\Delta }=\frac{\alpha t^{2}}{x\Delta }
両辺を \Delta x で除算します。
q=\frac{\alpha t^{2}}{x\Delta }
\Delta x で除算すると、\Delta x での乗算を元に戻します。
q=\frac{\alpha t^{2}}{x\Delta }\text{, }q\neq 0
変数 q を 0 と等しくすることはできません。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}