[ x ^ { 2 } - 16 x + 63 = 0 ]
x を解く
x=7
x=9
グラフ
共有
クリップボードにコピー済み
a+b=-16 ab=63
方程式を解くには、公式 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) を使用して x^{2}-16x+63 を因数分解します。 a と b を検索するには、解決するシステムをセットアップします。
-1,-63 -3,-21 -7,-9
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 63 になる整数の組み合わせをすべて一覧表示します。
-1-63=-64 -3-21=-24 -7-9=-16
各組み合わせの和を計算します。
a=-9 b=-7
解は和が -16 になる組み合わせです。
\left(x-9\right)\left(x-7\right)
求めた値を使用して、因数分解された式 \left(x+a\right)\left(x+b\right) を書き換えます。
x=9 x=7
方程式の解を求めるには、x-9=0 と x-7=0 を解きます。
a+b=-16 ab=1\times 63=63
方程式を解くには、左側をグループ化してください。最初に、左側を x^{2}+ax+bx+63 に書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
-1,-63 -3,-21 -7,-9
ab は正の値なので、a と b の符号は同じです。 a+b は負の値なので、a と b はどちらも負の値です。 積が 63 になる整数の組み合わせをすべて一覧表示します。
-1-63=-64 -3-21=-24 -7-9=-16
各組み合わせの和を計算します。
a=-9 b=-7
解は和が -16 になる組み合わせです。
\left(x^{2}-9x\right)+\left(-7x+63\right)
x^{2}-16x+63 を \left(x^{2}-9x\right)+\left(-7x+63\right) に書き換えます。
x\left(x-9\right)-7\left(x-9\right)
1 番目のグループの x と 2 番目のグループの -7 をくくり出します。
\left(x-9\right)\left(x-7\right)
分配特性を使用して一般項 x-9 を除外します。
x=9 x=7
方程式の解を求めるには、x-9=0 と x-7=0 を解きます。
x^{2}-16x+63=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 63}}{2}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1 を代入し、b に -16 を代入し、c に 63 を代入します。
x=\frac{-\left(-16\right)±\sqrt{256-4\times 63}}{2}
-16 を 2 乗します。
x=\frac{-\left(-16\right)±\sqrt{256-252}}{2}
-4 と 63 を乗算します。
x=\frac{-\left(-16\right)±\sqrt{4}}{2}
256 を -252 に加算します。
x=\frac{-\left(-16\right)±2}{2}
4 の平方根をとります。
x=\frac{16±2}{2}
-16 の反数は 16 です。
x=\frac{18}{2}
± が正の時の方程式 x=\frac{16±2}{2} の解を求めます。 16 を 2 に加算します。
x=9
18 を 2 で除算します。
x=\frac{14}{2}
± が負の時の方程式 x=\frac{16±2}{2} の解を求めます。 16 から 2 を減算します。
x=7
14 を 2 で除算します。
x=9 x=7
方程式が解けました。
x^{2}-16x+63=0
このような二次方程式は、平方完成により解くことができます。平方完成するには、方程式は最初に x^{2}+bx=c の形式になっている必要があります。
x^{2}-16x+63-63=-63
方程式の両辺から 63 を減算します。
x^{2}-16x=-63
それ自体から 63 を減算すると 0 のままです。
x^{2}-16x+\left(-8\right)^{2}=-63+\left(-8\right)^{2}
-16 (x 項の係数) を 2 で除算して -8 を求めます。次に、方程式の両辺に -8 の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}-16x+64=-63+64
-8 を 2 乗します。
x^{2}-16x+64=1
-63 を 64 に加算します。
\left(x-8\right)^{2}=1
因数x^{2}-16x+64。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x-8\right)^{2}}=\sqrt{1}
方程式の両辺の平方根をとります。
x-8=1 x-8=-1
簡約化します。
x=9 x=7
方程式の両辺に 8 を加算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}