Salta al contenuto principale
Microsoft
|
Math Solver
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Base
algebra
Trigonometria
Analisi matematica
statistiche
matrici
Personaggi
Calcola
\text{Divergent}
Quiz
Limits
\lim_{ x \rightarrow 0 } \frac{2}{x}
Problemi simili da ricerca Web
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Altri Elementi
Condividi
Copia
Copiato negli Appunti
Problemi analoghi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Torna a inizio pagina