Salta al contenuto principale
Microsoft
|
Math Solver
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Risolvi
Esercizio
Giocare
Argomenti
Pre-Algebra
Significato
Modalità
Il più grande fattore comune
Minimo comune multiplo
Ordine delle operazioni
Frazioni
Frazioni miste
Scomposizione in fattori primi
Esponenti
Radicali
Algebra
Combinazione di termini simili
Risolvere una variabile
Fattore
Espandi
Calcolo delle frazioni
Equazioni lineari
Equazioni di secondo grado
Disparità
Sistemi di equazioni
Matrici
Trigonometria
Semplificare
Calcolare
Grafici
Risolvi equazioni
Analisi matematica
Derivate
Integrali
Limiti
Input di algebra
Ingressi trigonometrici
Input di calcolo
Ingressi matrice
Base
algebra
Trigonometria
Analisi matematica
statistiche
matrici
Personaggi
Calcola
\infty
Quiz
Limits
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Problemi simili da ricerca Web
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Altri Elementi
Condividi
Copia
Copiato negli Appunti
Problemi analoghi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Torna a inizio pagina