Ugrás a tartalomra
Microsoft
|
Math Solver
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Alapvető
Algebra
Trigonometria
Kalkulus
statisztikák
Mátrixok
Karakterek
Kiértékelés
0
Teszt
Limits
\lim_{ x \rightarrow 0 } 5x
Hasonló feladatok a webes keresésből
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Több elem
Megosztás
Másolás
Átmásolva a vágólapra
Hasonló problémák
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Vissza a tetejére