Ugrás a tartalomra
Microsoft
|
Math Solver
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Alapvető
Algebra
Trigonometria
Kalkulus
statisztikák
Mátrixok
Karakterek
Kiértékelés
5
Teszt
Limits
\lim_{ x \rightarrow 0 } 5
Hasonló feladatok a webes keresésből
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Több elem
Megosztás
Másolás
Átmásolva a vágólapra
Hasonló problémák
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Vissza a tetejére