Ugrás a tartalomra
Microsoft
|
Math Solver
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Megoldás
Gyakorlás
Játszik
Témák
Algebra előtti
Jelentés
Mód
Legnagyobb közös tényező
Legkevésbé gyakori többszörös
A műveletek sorrendje
Törtek
Vegyes törtek
Elsődleges faktorizáció
Kitevők
Gyökök
Algebra
Kedvelési kifejezések kombinálása
Megoldás változóhoz
Tényező
Kiterjesztés
Törtek kiértékelése
Lineáris egyenletek
Másodfokú egyenletek
Egyenlőtlenségek
Egyenletrendszerek
Mátrixok
Trigonometria
Egyszerűsítés
Értékelés
Grafikonok
Egyenletek megoldása
Kalkulus
Származékok
Integrálok
Korlátok
Algebra bemenetek
Trigonometriai bemenetek
Számítás bemenetek
Mátrix bemenetek
Alapvető
Algebra
Trigonometria
Kalkulus
statisztikák
Mátrixok
Karakterek
Kiértékelés
\text{Divergent}
Teszt
Limits
5 ehhez hasonló probléma:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Hasonló feladatok a webes keresésből
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Több elem
Megosztás
Másolás
Átmásolva a vágólapra
Hasonló problémák
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Vissza a tetejére