Kiértékelés
\left(\begin{matrix}3&21\\4&35\end{matrix}\right)
Determináns kiszámítása
21
Megosztás
Átmásolva a vágólapra
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}0&3\\1&5\end{matrix}\right)
A mátrixszorzás akkor van definiálva, ha az első mátrix oszlopainak száma megegyezik a második mátrix sorainak számával.
\left(\begin{matrix}3&\\&\end{matrix}\right)
Az első mátrix első sorának minden elemét megszorozzuk a második mátrix első oszlopának a megfelelő elemeivel, majd ezeket a szorzatokat összeadva kapjuk meg a szorzatmátrix első sorának első oszlopában lévő elemet.
\left(\begin{matrix}3&2\times 3+3\times 5\\4&5\times 3+4\times 5\end{matrix}\right)
Hasonlóképpen kapjuk meg a szorzatmátrix többi elemét.
\left(\begin{matrix}3&6+15\\4&15+20\end{matrix}\right)
Az egyes elemeket egyszerűbb alakra hozzuk a tagok szorzásainak elvégzésével.
\left(\begin{matrix}3&21\\4&35\end{matrix}\right)
Kiszámoljuk a mátrix egyes elemeinek összegét.
Hasonló problémák
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
6 \times \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] + \left[ \begin{array} { l l l } { 2 } & { 0 } \\ { -1 } & { 1 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] - \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \times \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] ^ 2