Prijeđi na glavni sadržaj
Microsoft
|
Math Solver
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Osnovni
algebra
trigonometrija
račun
statistika
Matrice
Znakova
Izračunaj
0
Kviz
Limits
5 problemi slični:
\lim_{ x \rightarrow 0 } 5x
Slični problemi iz pretraživanja weba
Prove that for any c \neq 0 \lim_{x \rightarrow c}{h(x)} does not exist and that \lim_{x \rightarrow 0}{h(x)} does exist.
https://math.stackexchange.com/questions/334631/prove-that-for-any-c-neq-0-lim-x-rightarrow-chx-does-not-exist-and
Hint: take one sequence that contains only rationals and another one that contains only irrationals (both tending to c\ne 0). For the case of c=0, you can use e.g. that h is continuous at 0 ...
Proofs regarding Continuous functions 1
https://math.stackexchange.com/questions/526691/proofs-regarding-continuous-functions-1
The proof of part a) needs to be modified a bit. You have used the logic that if N \leq f(x) \leq M then xN \leq xf(x) \leq xM. This holds only when x \geq 0. It is better to change the argument ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Calculate: \lim_{x \to 0 } = x \cdot \sin(\frac{1}{x})
https://math.stackexchange.com/questions/1066434/calculate-lim-x-to-0-x-cdot-sin-frac1x
Your proof is incorrect, cause you used incorrect transform, but it has already been stated. I'll describe way to solve it. \lim_{x \to 0}\frac{\sin(\frac{1}{x})}{\frac{1}{x}} \neq 1 Hint : ...
Prove that f(x) is bounded. Please check my proof.
https://math.stackexchange.com/q/1052420
Here is another approach: Let L_0 = \lim_{x \downarrow 0} f(x), L_\infty = \lim_{x \to \infty} f(x). By definition of the limit we have some \delta>0 and N>0 such that if x \in (0, \delta), ...
Complex Function limit by investigating sequences
https://math.stackexchange.com/questions/1915934/complex-function-limit-by-investigating-sequences
If a limit as z \to 0 exists, one should be able to plug in any sequence \{ z_n \} going to zero and get the same limit. Limits of sequences are generally easier to work with. So in this case if ...
Više Predmeta
Dijeliti
Kopija
Kopirano u međuspremnik
Slični problemi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Povratak na vrh