Prijeđi na glavni sadržaj
Microsoft
|
Math Solver
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Osnovni
algebra
trigonometrija
račun
statistika
Matrice
Znakova
Izračunaj
\text{Divergent}
Kviz
Limits
5 problemi slični:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Slični problemi iz pretraživanja weba
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Više Predmeta
Dijeliti
Kopija
Kopirano u međuspremnik
Slični problemi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Povratak na vrh