Prijeđi na glavni sadržaj
Microsoft
|
Math Solver
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Riješiti
Praksa
Igrati
Teme
Predalgebra
Značiti
Način
Najveći zajednički faktor
Najmanji uobičajeni višekratnik
Redoslijed operacija
Razlomaka
Mješoviti razlomci
Primarna faktorizacija
Eksponente
Radikali
Algebra
Kombiniraj slične pojmove
Riješi za varijablu
Faktor
Proširiti
Procijeni razlomke
Linearne jednadžbe
Kvadratne jednadžbe
Nejednakosti
Sustavi jednadžbi
Matrice
Trigonometrija
Pojednostaviti
Procijeniti
Grafova
Rješavanje jednadžbi
Račun
Derivata
Integrali
Granice
Ulazi algebre
Ulazi trigonometrije
Ulazi računa
Ulazi matrice
Osnovni
algebra
trigonometrija
račun
statistika
Matrice
Znakova
Izračunaj
5
Kviz
Limits
5 problemi slični:
\lim_{ x \rightarrow 0 } 5
Slični problemi iz pretraživanja weba
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Više Predmeta
Dijeliti
Kopija
Kopirano u međuspremnik
Slični problemi
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Povratak na vrh