Eduki nagusira salto egin
Microsoft
|
Math Solver
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Oinarrizko
aljebra
trigonometria
kalkulua
estatistika
Matrizeak
Karaktereak
Ebaluatu
5
Azterketa
Limits
antzeko 5 arazoen antzekoak:
\lim_{ x \rightarrow 0 } 5
Bilaketaren antzeko arazoak webgunean
Is \lim_{x\to 0} (x) different from dx
https://math.stackexchange.com/questions/1157952/is-lim-x-to-0-x-different-from-dx
It is confusing because the way derivatives are taught today are different from how it was done back in the 1600s. Back then a derivative was dy/dx, where dy and dx were infinitesimal ...
Calculating the limit: \lim \limits_{x \to 0} \frac{\ln(\frac{\sin x}{x})}{x^2}.
https://math.stackexchange.com/q/1147074
We want L = \lim_{x\to 0} \frac{\ln(\frac{\sin x}{x})}{x^2} Since the top approaches \ln(1) = 0 and the bottom also approaches 0, we may use L'Hopital: L = \lim_{x\to 0}{\frac{(\frac{x}{\sin x})(\frac{x \cos x - \sin x}{x^2})}{2x}} = \lim_{x\to 0}\frac{x \cos x - \sin x}{2x^2\sin x} ...
Left/right-hand limits and the l'Hôpital's rule
https://math.stackexchange.com/q/346759
In this very case it is even simpler: the limit (not one sided!) exists, so you don't even need to split the calculation in two steps! And yes: apply l'Hospital directly to the limit .
Arrow in limit operator
https://math.stackexchange.com/questions/36333/arrow-in-limit-operator
Yes, it means that considers decreasing sequences that converge to 0. I've only once worked with someone who preferred to use the \searrow and \nearrow notation, but it's a good notation in the ...
Prob. 15, Sec. 5.1, in Bartle & Sherbert's INTRO TO REAL ANALYSIS: A bounded function on (0, 1) having no limit as x \to 0
https://math.stackexchange.com/q/2879789
What you did is correct. In order to show that \alpha\neq\beta, suppose otherwise. That is, suppose that \alpha=\beta. I will prove that \lim_{x\to0}f(x)=\alpha(=\beta), thereby reaching a ...
Use L'Hopital's with this problem?
https://math.stackexchange.com/questions/1419122/use-lhopitals-with-this-problem
Let \displaystyle y=\lim_{x\rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\sin x}\;, Now Let x=0+h\;, Then \displaystyle y=\lim_{h\rightarrow 0}\left(\frac{1}{h}\right)^{\sin h} So \displaystyle \ln(y) = \lim_{h\rightarrow 0}\sin (h)\cdot \ln\left(\frac{1}{h}\right) = -\lim_{h\rightarrow 0}\sin h\cdot \ln(h) = -\lim_{h\rightarrow 0}\frac{\ln(h)}{\csc (h)}\left(\frac{\infty}{\infty}\right) ...
Gehiago Artikuluak
Partekatu
Kopiatu
Kopiatu portapapeletan
Antzeko arazoak
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Hasierara itzuli