Eduki nagusira salto egin
Microsoft
|
Math Solver
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Oinarrizko
aljebra
trigonometria
kalkulua
estatistika
Matrizeak
Karaktereak
Ebaluatu
\infty
Azterketa
Limits
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Bilaketaren antzeko arazoak webgunean
Showing that the \lim_{x\to 0}\frac{1}{x^2} does not exist
https://math.stackexchange.com/q/1579837
Suppose that the limit exists and equals c\in\mathbb{R}. Then for e.g. \epsilon>1 some \delta>0 must exist with \left|x\right|<\delta\implies\left|\frac{1}{x^{2}}-c\right|<1. However, if we ...
Applying L'Hopital's rule to \lim\limits_{x \to 0}\frac{2}{x^2}
https://math.stackexchange.com/questions/502024/applying-lhopitals-rule-to-lim-limits-x-to-0-frac2x2
In order to use the 0/0 case of L'Hospital's rule, we require that both the numerator and the denominator tend to 0 at the appropriate point. The numerator does not tend to 0.
Is this piece-wise function continuous, and why?
https://math.stackexchange.com/questions/2411697/is-this-piece-wise-function-continuous-and-why
If we look at the behaviour as x approaches zero from the right, the function looks like this: \begin{matrix}x & f(x) = \frac{1}{x^2} \\ 1 & 1 \\ 0.1 & 100 \\ 0.01 & 10000 \\ 0.001 & 1000000 \\ 0.0001 & 100000000\end{matrix} ...
Manipulating \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}}
https://math.stackexchange.com/questions/2177214/manipulating-lim-limits-x-to-0-frac-sqrtx-sqrtxxn
If \lim\limits_{x \to 0}{\frac{\sqrt{x+\sqrt{x}}}{x^n}} = c for some c\neq 0, then \lim\limits_{x \to 0}{\frac{x+\sqrt{x}}{x^{2n}}} =c^2. Now, let \sqrt{x}=t. We then wish to find n such ...
Limit of \frac{f'(x)}{g'(x)} & g'(x) \neq 0 in Hypotheses of L'Hospital's rule.
https://math.stackexchange.com/q/110408
When we write things like \lim_{x\to a}h(x) = \lim_{x\to a}H(x) we usually mean "if either limit exists, then they both do and they are equal; if either limit does not exist, then neither limit ...
How do we calculate the Right and Left Hand Limit of 1/x?
https://math.stackexchange.com/questions/762599/how-do-we-calculate-the-right-and-left-hand-limit-of-1-x
\mathbf{Definition} : \boxed{ \lim_{x \to a^+ } f(x) = \infty } means that for all \alpha > 0, there exists \delta > 0 such that if 0<x -a < \delta, then f(x) > \alpha \mathbf{Example} ...
Gehiago Artikuluak
Partekatu
Kopiatu
Kopiatu portapapeletan
Antzeko arazoak
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Hasierara itzuli