Eduki nagusira salto egin
Microsoft
|
Math Solver
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Ebatzi
Praktikatu
Jolastu
Gaiak
Aljebra aurre-álgebra
Esan nahi du
Modua
Zatitzaile komunik handiena
Gutxieneko multiplo komuna
Eragiketen ordena
Zatikiak
Zatiki mistoak
Lehen faktoretza
Adierazleak
Erradikalak
Aljebra
Antzeko terminoak konbinatu
Aldagai bat ebaztea
Faktorea
Zabaldu
Zatikiak ebaluatu
Ekuazio linealak
Ekuazio koadratikoak
Desberdintasunak
Ekuazio-sistemak
Matrizeak
Trigonometria
Sinplifikatu
Ebaluatu
Grafikoak
Ekuazioak ebaztea
Kalkulua
Deribatuak
Integralak
Mugak
Aljebra-sarrerak
Trigonometriako sarrerak
Kalkulu-sarrerak
Matrikula-sarrerak
Oinarrizko
aljebra
trigonometria
kalkulua
estatistika
Matrizeak
Karaktereak
Ebaluatu
\text{Divergent}
Azterketa
Limits
antzeko 5 arazoen antzekoak:
\lim_{ x \rightarrow 0 } \frac{2}{x}
Bilaketaren antzeko arazoak webgunean
Show that Let f : \mathbb{R} \setminus \{0\} \to \mathbb{R} be defined by f(x) = \frac{1}{x}. Show \lim_{x \to 0}\frac{1}{x} doesn't exist.
https://math.stackexchange.com/q/2826102
Suppose that f: U → R is an application defined on a subset U of the set R of reals. If p is a real, not necessarily belonging to U but such that f is "defined in the neighborhood of p", ...
Find \lim_{x\rightarrow0}\frac{x}{[x]}
https://math.stackexchange.com/q/2835948
For x\to 0 the expression \frac{x}{[x]} is not well defined since for 0<x<1 it corresponds to \frac x 0 and thus we can't calculate the limit for that expression. As you noticed, we can only ...
Disprove the limit \lim_{x\to 0}\frac{1}{x}=5 with epsilon-delta
https://math.stackexchange.com/q/1527181
Given \epsilon> 0, we want to find \delta> 0 such that if |x- 0|= |x|< |\delta| then |\frac{1}{x}- 5|< \epsilon. Of course, |\frac{1}{x}- 5|= |\frac{1- 5x}{x}| so, if x is positive, |\frac{1}{x}- 5|<\epsilon ...
Is this a valid use of l'Hospital's Rule? Can it be used recursively?
https://math.stackexchange.com/questions/946785/is-this-a-valid-use-of-lhospitals-rule-can-it-be-used-recursively
L'Hôpital's Rule Assuming that the following conditions are true: f(x) and g(x) must be differentiable \frac{d}{dx}g(x)\neq 0 \lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{0}{0}\mbox{ or }\lim\limits_{x\to c} \frac{f(x)}{g(x)}= \frac{\pm\infty}{\pm\infty} ...
How to explain that division by 0 yields infinity to a 2nd grader
https://math.stackexchange.com/questions/242258/how-to-explain-that-division-by-0-yields-infinity-to-a-2nd-grader
The first thing to point out is that division by zero is not defined! You cannot divide by zero. Consider the number 1/x where x is a negative number. You will find that 1/x is negative for all ...
precise definition of a limit at infinity, application for limit at sin(x)
https://math.stackexchange.com/questions/1776133/precise-definition-of-a-limit-at-infinity-application-for-limit-at-sinx
Some items have been dealt with in comments, so we look only at c). We want to show that for any \epsilon\gt 0, there is a B such that if x\gt B then |\sin(1/x)-0|\lt \epsilon. Let \epsilon\gt 0 ...
Gehiago Artikuluak
Partekatu
Kopiatu
Kopiatu portapapeletan
Antzeko arazoak
\lim_{ x \rightarrow 0 } 5
\lim_{ x \rightarrow 0 } 5x
\lim_{ x \rightarrow 0 } \frac{2}{x}
\lim_{ x \rightarrow 0 } \frac{1}{x^2}
Hasierara itzuli