\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.

$⎩⎪⎪⎪⎨⎪⎪⎪⎧ a+b+c+d=203a−2c=3b+d=6c+b=8 $

Solve for a, b, c, d

a = \frac{31}{5} = 6\frac{1}{5} = 6.2<br/>b=\frac{1}{5}=0.2<br/>c = \frac{39}{5} = 7\frac{4}{5} = 7.8<br/>d = \frac{29}{5} = 5\frac{4}{5} = 5.8

$a=531 =651 =6.2$

$b=51 =0.2$

$c=539 =754 =7.8$

$d=529 =554 =5.8$

$b=51 =0.2$

$c=539 =754 =7.8$

$d=529 =554 =5.8$

Copy

Copied to clipboard

Similar Problems

\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.

${8x+2y=467x+3y=47 $

\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.

${3x=24x+3y=17 $

\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.

${x=5y+56x−4y=7 $

\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.

$⎩⎪⎨⎪⎧ x=y+2z3x−z=73z−y=7 $

\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.

$⎩⎪⎪⎪⎨⎪⎪⎪⎧ a+b+c+d=203a−2c=3b+d=6c+b=8 $