\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.
Solve for x, y
x=8
y=3
Graph
Share
Copied to clipboard
x=\frac{24}{3}
Consider the first equation. Divide both sides by 3.
x=8
Divide 24 by 3 to get 8.
8+3y=17
Consider the second equation. Insert the known values of variables into the equation.
3y=17-8
Subtract 8 from both sides.
3y=9
Subtract 8 from 17 to get 9.
y=\frac{9}{3}
Divide both sides by 3.
y=3
Divide 9 by 3 to get 3.
x=8 y=3
The system is now solved.
Similar Problems
\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.
\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.
\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.
\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.