\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.

${3x=24x+3y=17 $

Solve for x, y

x=8<br/>y=3

$x=8$

$y=3$

$y=3$

Graph

Copy

Copied to clipboard

x=\frac{24}{3}

Consider the first equation. Divide both sides by 3.

x=8

Divide 24 by 3 to get 8.

8+3y=17

Consider the second equation. Insert the known values of variables into the equation.

3y=17-8

Subtract 8 from both sides.

3y=9

Subtract 8 from 17 to get 9.

y=\frac{9}{3}

Divide both sides by 3.

y=3

Divide 9 by 3 to get 3.

x=8 y=3

The system is now solved.

Similar Problems

\left\{ \begin{array} { l } { 8 x + 2 y = 46 } \\ { 7 x + 3 y = 47 } \end{array} \right.

${8x+2y=467x+3y=47 $

\left\{ \begin{array} { l } { 3 x = 24 } \\ { x + 3 y = 17 } \end{array} \right.

${3x=24x+3y=17 $

\left\{ \begin{array} { l } { x = 5y + 5 } \\ { 6 x - 4 y = 7 } \end{array} \right.

${x=5y+56x−4y=7 $

\left\{ \begin{array} { l } { x = y + 2z } \\ { 3 x - z = 7 } \\ { 3 z - y = 7 } \end{array} \right.

$⎩⎪⎨⎪⎧ x=y+2z3x−z=73z−y=7 $

\left\{ \begin{array} { l } { a + b + c + d = 20 } \\ { 3a -2c = 3 } \\ { b + d = 6} \\ { c + b = 8 } \end{array} \right.

$⎩⎪⎪⎪⎨⎪⎪⎪⎧ a+b+c+d=203a−2c=3b+d=6c+b=8 $