Solve for a
a=\frac{3b}{b-2}
b\neq 2
Solve for b
b=\frac{2a}{a-3}
a\neq 3
Share
Copied to clipboard
ab-2a=3b
Use the distributive property to multiply a by b-2.
\left(b-2\right)a=3b
Combine all terms containing a.
\frac{\left(b-2\right)a}{b-2}=\frac{3b}{b-2}
Divide both sides by b-2.
a=\frac{3b}{b-2}
Dividing by b-2 undoes the multiplication by b-2.
ab-2a=3b
Use the distributive property to multiply a by b-2.
ab-2a-3b=0
Subtract 3b from both sides.
ab-3b=2a
Add 2a to both sides. Anything plus zero gives itself.
\left(a-3\right)b=2a
Combine all terms containing b.
\frac{\left(a-3\right)b}{a-3}=\frac{2a}{a-3}
Divide both sides by a-3.
b=\frac{2a}{a-3}
Dividing by a-3 undoes the multiplication by a-3.