Přejít k hlavnímu obsahu
Microsoft
|
Math Solver
Vyřešit
Cvičení
Hrát
Témata
Elementární algebra
Průměr
Modus
Největší společný faktor
Nejmenší společný násobek
Pořadí operací
Zlomky
Smíšené zlomky
Prvočíselný rozklad
Exponenty
Radikály
Algebra
Kombinovat podobné podmínky
Vyřešte proměnnou
Faktor
Rozbalit
Vyhodnotit zlomky
Lineární rovnice
Kvadratické rovnice
Nerovnosti
Soustavy rovnic
Matice
Trigonometrie
Zjednodušit
Vyhodnotit
Grafy
Vyřešte rovnice
Kalkulus
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy kalkulu
Maticové vstupy
Vyřešit
Cvičení
Hrát
Témata
Elementární algebra
Průměr
Modus
Největší společný faktor
Nejmenší společný násobek
Pořadí operací
Zlomky
Smíšené zlomky
Prvočíselný rozklad
Exponenty
Radikály
Algebra
Kombinovat podobné podmínky
Vyřešte proměnnou
Faktor
Rozbalit
Vyhodnotit zlomky
Lineární rovnice
Kvadratické rovnice
Nerovnosti
Soustavy rovnic
Matice
Trigonometrie
Zjednodušit
Vyhodnotit
Grafy
Vyřešte rovnice
Kalkulus
Deriváty
Integrály
Limity
Vstupy algebry
Vstupy trigonometrie
Vstupy kalkulu
Maticové vstupy
Základní
algebra
trigonometrie
Kalkulus
statistiky
matice
Znaky
Vyhodnotit
0
Derivovat vzhledem k x
0
Kvíz
Differentiation
\frac { d } { d x } ( 2 )
Podobné úlohy z vyhledávání na webu
let f be a differentiable function. Compute \frac{d}{dx}g(2), where g(x) = \frac{f(2x)}{x}.
https://math.stackexchange.com/questions/2351494/let-f-be-a-differentiable-function-compute-fracddxg2-where-gx
You have an extra 4 in the numerator here: i know that : \dfrac{d}{dx}g(2)=\dfrac{4(\dfrac{d}{dx}f(4))-4f(4)}{4} If g(x) = \dfrac{f(2x)}x, then \begin{align*} \frac d{dx} g(x) &= \frac d{dx} ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/how-to-rewrite-fracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is well-defined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitive-explanation-of-frac-mathrmd-mathrmdx-0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Question about the chain rule.
https://math.stackexchange.com/q/2940216
Suppose we add an infinitesimal to x : x_1=x_0+\Delta x . What happens to y ? By definition, the derivative tells us how much a function changes relative to changes in its input: the change ...
Spectrum of the derivative operator
https://math.stackexchange.com/questions/2117107/spectrum-of-the-derivative-operator
\newcommand{\id}{I} As it was mentioned in the comments, the domain where you defined the operator is not correct - If you take C^1-functions with derivatives in L^2 the domain will be "too ...
Více položek
Sdílet
Kopírovat
Zkopírováno do schránky
Podobné příklady
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a -2) )
\frac { d } { d z } ( \frac{z+3}{2z-4} )
Zpět na začátek