Vyhodnotit
\frac{14-x}{\left(x-2\right)\left(x+1\right)}
Derivovat vzhledem k x
\frac{x^{2}-28x+16}{x^{4}-2x^{3}-3x^{2}+4x+4}
Graf
Sdílet
Zkopírováno do schránky
\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro x-2 a x+1 je \left(x-2\right)\left(x+1\right). Vynásobte číslo \frac{4}{x-2} číslem \frac{x+1}{x+1}. Vynásobte číslo \frac{5}{x+1} číslem \frac{x-2}{x-2}.
\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Vzhledem k tomu, že \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)}
Proveďte násobení ve výrazu 4\left(x+1\right)-5\left(x-2\right).
\frac{-x+14}{\left(x-2\right)\left(x+1\right)}
Slučte stejné členy ve výrazu 4x+4-5x+10.
\frac{-x+14}{x^{2}-x-2}
Roznásobte \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Nejmenší společný násobek pro x-2 a x+1 je \left(x-2\right)\left(x+1\right). Vynásobte číslo \frac{4}{x-2} číslem \frac{x+1}{x+1}. Vynásobte číslo \frac{5}{x+1} číslem \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+1\right)-5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Vzhledem k tomu, že \frac{4\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} a \frac{5\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4x+4-5x+10}{\left(x-2\right)\left(x+1\right)})
Proveďte násobení ve výrazu 4\left(x+1\right)-5\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{\left(x-2\right)\left(x+1\right)})
Slučte stejné členy ve výrazu 4x+4-5x+10.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}+x-2x-2})
S využitím distributivnosti roznásobte každý člen výrazu x-2 každým členem výrazu x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-x+14}{x^{2}-x-2})
Sloučením x a -2x získáte -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-x^{1}+14)-\left(-x^{1}+14\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{1-1}-\left(-x^{1}+14\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Proveďte zjednodušení.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}+14\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Vynásobte číslo x^{2}-x^{1}-2 číslem -x^{0}.
\frac{x^{2}\left(-1\right)x^{0}-x^{1}\left(-1\right)x^{0}-2\left(-1\right)x^{0}-\left(-x^{1}\times 2x^{1}-x^{1}\left(-1\right)x^{0}+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Vynásobte číslo -x^{1}+14 číslem 2x^{1}-x^{0}.
\frac{-x^{2}-\left(-x^{1}\right)-2\left(-1\right)x^{0}-\left(-2x^{1+1}-\left(-x^{1}\right)+14\times 2x^{1}+14\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{-x^{2}+x^{1}+2x^{0}-\left(-2x^{2}+x^{1}+28x^{1}-14x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Proveďte zjednodušení.
\frac{x^{2}-28x^{1}+16x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Slučte stejné členy.
\frac{x^{2}-28x+16x^{0}}{\left(x^{2}-x-2\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{x^{2}-28x+16\times 1}{\left(x^{2}-x-2\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.
\frac{x^{2}-28x+16}{\left(x^{2}-x-2\right)^{2}}
Pro všechny členy t, t\times 1=t a 1t=t.