Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=-5 ab=1\times 6=6
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako y^{2}+ay+by+6. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,-6 -2,-3
Vzhledem k tomu, že výraz ab je kladný, mají hodnoty a a b stejné znaménko. Vzhledem k tomu, že výraz a+b je záporný, mají obě hodnoty a i b záporné znaménko. Uveďte všechny celočíselné páry, které dávají 6 produktu.
-1-6=-7 -2-3=-5
Vypočtěte součet pro jednotlivé dvojice.
a=-3 b=-2
Řešením je dvojice se součtem -5.
\left(y^{2}-3y\right)+\left(-2y+6\right)
Zapište y^{2}-5y+6 jako: \left(y^{2}-3y\right)+\left(-2y+6\right).
y\left(y-3\right)-2\left(y-3\right)
Koeficient y v prvním a -2 ve druhé skupině.
\left(y-3\right)\left(y-2\right)
Vytkněte společný člen y-3 s využitím distributivnosti.
y^{2}-5y+6=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
y=\frac{-\left(-5\right)±\sqrt{25-4\times 6}}{2}
Umocněte číslo -5 na druhou.
y=\frac{-\left(-5\right)±\sqrt{25-24}}{2}
Vynásobte číslo -4 číslem 6.
y=\frac{-\left(-5\right)±\sqrt{1}}{2}
Přidejte uživatele 25 do skupiny -24.
y=\frac{-\left(-5\right)±1}{2}
Vypočítejte druhou odmocninu čísla 1.
y=\frac{5±1}{2}
Opakem -5 je 5.
y=\frac{6}{2}
Teď vyřešte rovnici y=\frac{5±1}{2}, když ± je plus. Přidejte uživatele 5 do skupiny 1.
y=3
Vydělte číslo 6 číslem 2.
y=\frac{4}{2}
Teď vyřešte rovnici y=\frac{5±1}{2}, když ± je minus. Odečtěte číslo 1 od čísla 5.
y=2
Vydělte číslo 4 číslem 2.
y^{2}-5y+6=\left(y-3\right)\left(y-2\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 3 za x_{1} a 2 za x_{2}.